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Abstract 

  We investigate the applicability of an incompressible diffuse interface model for two-phase 

incompressible fluid flows with large viscosity and density contrasts. Diffuse-interface 

models have been used previously primarily for density-matched fluids, and it remains 

unclear to what extent such models can be used for fluids of different density, thereby 

potentially limiting the application of these models. In this paper, the convective 

Cahn-Hilliard equation and the condition that the velocity field is divergence-free are derived 

from the conservation law of mass of binary mixtures in a straightforward way, for fluids 

with large density and viscosity ratios. Differences in the equations of motion with a 

previously derived quasi-incompressible model are shown to result from the respective 

assumptions made regarding the relationship between the diffuse fluxes of two species. The 

convergence properties of the model are investigated for cases with large density ratio. 

Quantitative comparisons are made with results from previous studies to validate the model 

and its numerical implementation. Tests show that the variation in volume during the 

computation is of the order of machine accuracy, which is consistent with our use of a 

conservative discretization scheme (finite volume methods) for the Cahn-Hilliard equation. 

Results of the method are compared with previous work for the change in topology of rising 

bubbles and Rayleigh-Taylor instability. Additional results are presented for head-on droplet 

collision and the onset of droplet entrainment in stratified flows. 

 

Keywords: Diffuse interface; Large density ratio; Multiphase flow; Bubbles; 

Rayleigh-Taylor instability; Droplet collision; Stratified flow. 

 

1. Introduction 

 

Amongst interface tracking methods such as volume-of-fluid (VOF) [1, 2], level-set (LS) [3, 

4] and front-tracking [5], diffuse interface (DI) methods [6-8] provide a useful alternative 

that does not seem to suffer from problems with either mass conservation or the accurate 

computation of surface tension. In DI methods, the sharp fluid-fluid interface is replaced by a 

narrow layer in which the fluids may mix. The concept of a diffuse interface was proposed by 

van der Waals long ago [9], but it has gained popularity only in recent years as a tool for 

numerical simulations of two-phase flows. The resulting DI method has been used for the 

simulation of a wide range of two-phase flow problems including vesicle dynamics [10], 

Hele-Shaw flows [11], head-on droplet collision [12] and moving contact lines [13, 14] (see 

[7] for an extensive review). Of the DI models for incompressible, immiscible two-phase 

flow, which is the focus of our work, Model H [15] has attracted much attention in the 

context of the simulation of matched-density fluids. In this model, the governing equations 
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are the continuity and momentum equations for a divergence-free velocity field, in 

conjunction with the convective Cahn-Hilliard equation for the order parameter. Jacqmin [14] 

and the present authors [16] showed that an analysis of the flow near a moving contact line 

based on the H Model leads to results that are directly comparable to results of the 

Navier-Stokes equations with a sharp interface. Kim [17] presented a comparison of 

(two-dimensional) numerical results obtained from the H Model for density-matched fluids 

with analytical results from the Navier-Stokes equations with a sharp interface for a capillary 

wave, and for a deformed droplet in a shear flow.  

 

The issue whether the H Model can be applied to two-phase flows with a density contrast has 

received little attention, but is obviously crucial in applications. A straightforward extension 

of the H model would be to replace the constant density 0  with a variable density )(C  

and to continue to take the velocity field to be divergence-free. This so-called modified H 

Model would be an appealing computational method for general two-phase flows, primarily 

because of the smooth variation of the order parameter across interfaces. It has been used 

previously by Jacqmin [6], for the simulation of Rayleigh-Taylor instability as well as for 

flows with moving contact lines [14, 18]. Test cases using this model for fluids with a large 

density contrast are rare, however. An exception is a case run by Kim [17], who primarily 

tested his new surface tension formulation, but a detailed comparison with previous work 

was not provided and this single test was only qualitative. One of the main aims of the 

present paper is therefore to perform extensive numerical tests for a variety of problems. 

 

In addition to the performance of the modified H model in numerical validation tests, the 

theoretical basis of the model for flows of fluids with a density contrast is unclear at present. 

Most rigorous work to justify the use of the modified H Model has focused on the stresses 

arising from gradients in the order parameter, with emphasis on showing that these strictly 

dissipate energy [6]. But a full derivation of these equations of motion is not available, to our 

knowledge. Jacqmin [14] merely stated that this is the simplest possible 

Navier-Stokes-Cahn-Hilliard DI model, and that effects of compressibility are neglected in 

this model. This is also borne out by more rigorous derivations of DI models for fluids with a 

density contrast, as these do not recover the (modified) H model. Antanovskii [19] derived a 

quasi-incompressible DI model for binary mixtures, wherein the immiscible liquids can 

mutually penetrate into each other in such a way that the sum of the mass diffusive flow rates 

of the two fluids equals zero (as discussed in more detail in the next section). As a result he 

obtained the conventional compressible continuity equation, 

0)(  ut , 1 

such that the velocity field is only solenoidal if the bulk densities are equal. Lowengrub and 

Truskinovsky [20] extended Antanovskii’s model by presenting a new formulation of the 

chemical potential, in which the kinetic fluid pressure and fluid density were introduced. An 

important issue here is that, in order for results of DI simulations to be comparable to 

solutions of the incompressible Navier-Stokes equations, the volume of each fluid should 

remain constant in time: it should not be allowed to change because of diffuse fluxes. It is 
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anticipated that this is a concern if the velocity field is not divergence-free. A further aim of 

this paper is therefore to investigate the origin of the differences with the modified H Model. 

 

We therefore first investigate in this paper the origins of the differences between the H and 

other DI models. In Sec.2, it is shown that either the H Model or a quasi-incompressible DI 

model can be recovered by using different choices of definition of the diffusive fluxes. We 

start from the continuity equations for the binary mixtures of two fluids, and use the volume 

fraction of one of the fluids as the order parameter. The convective Cahn-Hilliard equation 

and the continuity equation for a divergence-free velocity field are then derived in a 

straightforward way with the assumption of incompressibility of the two-fluid mixture. Also 

investigated in Sec.2 is whether the H Model conserves mass. Results of detailed numerical 

validation studies that have been carried out for various test cases are presented in Sec.4. 

Comparisons with previous work are made for the transition of a spherical bubble into a 

toroidal bubble and the nonlinear development of Rayleigh-Taylor instabilities. Mass 

conservation and convergence of the method are investigated in particular for rising bubbles 

for a very large density contrast. Finally, we apply the DI model to simulate head-on binary 

droplet collision to investigate the sensitivity of the results to the value of the Peclet number 

in the Cahn-Hilliard equation, and use the method to simulate the onset of entrainment of 

droplets in pressure-driven stratified flow. 

 

2. Governing equations of motion of fluids 

2.1 Continuity and Cahn-Hilliard equations 

We consider here the flow of two incompressible immiscible fluids (A and B) of different 

density and viscosity. Similar to the VOF method, the volume fraction of one of the fluids is 

used to indicate the composition of the two components in a volume element in the domain. 

If the volume fraction of component A is denoted by C ( 10 C ), the local densities of the 

species A and B in a volume element are  

BBAA CC  )1(~ and ~  , 2 

respectively, where A  and B  denote the corresponding bulk density values.  The local 

averaged density will be denoted by BA CC  )1(  . 

 

We begin with the analysis of the conservation of mass of species A in an arbitrary volume 

element fixed in space. The corresponding equation of continuity can be written as 

0
~





A

A

t
n


, 3 

where An  denotes the mass flow rate (per unit volume). In the bulk region, only advection 

contributes to the mass flow, i.e., un AA ~  where u  is the velocity of the fluid flow, 

which will be defined more precisely below. In interfacial regions between the two fluids, a 

smooth transition of C is maintained by diffusion, and the total mass flux should include a 
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contribution from this diffusive flow. The diffusive mass flow of component A can be 

expressed by AAj , where Aj  is a volume diffusive flow rate. Hence we have the total 

mass flow rate for the component A  

AAAA jun   ~ . 4 

Substitution of (4) in (3) gives 

0)()~(
~





AAA

A

t
ju 


, 5 

and a similar result can be obtained for species B. Subsequently, substitution of Eqn.(2) into 

(5) gives 

 

0)( 



AC

t

C
ju  for component A, and 6a 

similarly,  

0)])1[(
)1(





BC

t

C
ju  for component B. 6b 

From (6a) and (6b) we obtain 

)( BBAA
Dt

D
jju 


 , 7a 

and  

)( BA jju  . 7b 

 

In [19], Antanovskii required that the mass diffusive flows satisfy BBAA jj   ; evidently, 

this leads to Eqn.(1). Hence u is defined in that work as the mass-averaged velocity, i.e., such 

that BA nnu  , which logically connects with the velocity used in the Navier-Stokes 

equations. On the other hand, the CH equation is not exactly recovered in [19] and, more 

importantly, if the bulk densities are not matched, the volume diffusive flow rates differ, and 

the total volume occupied by each fluid is no longer expected to be conserved, as is normally 

required in incompressible flows of immiscible fluids. Insisting on conservation of volume 

during the mixing process leads therefore to a different result. In this case, when an amount 

of fluid A flows out of an infinitesimal volume element due to interfacial diffusion, there will 

also be an amount of fluid B of the same volume that would enter the volume element at the 

same time, and vice versa. That is to say 

AB jj  . 8 

This is in the spirit of the Cahn-Hilliard model for binary fluids, i.e., the diffusive flow is not 

related to the densities but the local compositions of the two components. We note that in this 

case, the alternative definition BBAA  // nnu  , which can be interpreted as a 
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volume-averaged velocity, leads to the equivalent result (8). Note that the volume-averaged 

and mass-averaged velocities are actually the same in the bulk flow, where the diffuse flux 

vanishes. Hence the difference between (8) and Antonovskii’s approach is either a difference 

in requirements imposed on the diffuse fluxes, or in the definition of the fluid velocity.  

 

Equation (8) indicates that the volume diffusive flux of the two species are of equal 

magnitude, but of opposite sign. It is therefore convenient to introduce the notation 

jjjj  BA  and . We can then obtain the continuity equation of a divergence-free velocity 

field from by substituting Eqn. (8) into Eqn. (7b), 

0 u , 9 

and the evolution equation for the volume fraction by substituting (9) into (6a) or (6b), i.e., 

0



ju C

t

C
. 10 

Equation (10) is the convective Cahn-Hilliard equation, with the volume fraction as the order 

parameter. This shows that a divergence-free velocity and the convective Cahn-Hilliard 

equation can be derived in a straightforward manner from the continuity equation for binary 

fluids (Eqn. (5)). We note that density and viscosity contrasts play no role in this deduction.  

 

We conclude this section by investigating the conservation of global mass of either species, 

when Eqn.(8) is used. By summing the continuity equations for each species (e.g., Eqn. (5) 

for species A), and recognizing the relationship between volume diffusive flow (8), we obtain 

the continuity equation 

0)()( 



ju BA

t



.  11 

When the densities match exactly, Eqn. (11) simplifies to the compressible single-phase flow 

continuity equation, 

0)( 



u



t
. 12 

For mixtures with a density contrast, the present model still conserves mass globally when 

appropriate boundary conditions are used. Let   be a region in two- or three-dimensional 

space,   its boundary, and n denote the unit outward normal defined at points of  . 

After integrating this equation over  , and upon using the divergence theorem, we have 

0)( 






dS dS dV
t

BA






jnnu .  13 

The total mass of the whole system will be conserved, if there is no volume diffusive flow 

through the boundaries, i.e., 

0 jn   14 

and interfacial regions do not intersect with  . It should be noted that the resulting global 

mass conservation does not imply that the volume enclosed by any specified C contour (e.g., 

C=0.5) remains constant. However, such mass conservation is expected to hold as well in the 
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sharp-interface limit, wherein both definitions of global mass become identical. This 

necessary requirement for global mass conservation is therefore an appropriate boundary 

condition for the convective Cahn-Hilliard equation. A common type of problem wherein an 

interfacial region intersects a boundary is that which involves moving contact lines [14]. In 

such flows, however, the velocity normal to the wall is zero, and again enforcing Eqn. (14) is 

required for global mass conservation. Finally, we note here that it is highly beneficial to use 

a conservative discretization scheme (e.g., finite volume methods) for Eqn. (10) or (11), in 

order for mass conservation to be achieved at a discrete level.  

 

2.2 Momentum equation 

We seek solutions of the modified Navier-Stokes equations, 

fuuuu
u





)]([)( Tp

t
 , 15 

where the symbol f denotes the body and surface forces, such as the gravity g and surface 

tension force per unit volume stf . This momentum balance has been widely used in DI 

models [14, 17-20]. When the fluids are of equal density, the results of Antanovskii [19] 

would indicate that Eqns (9)-(10) can be used in conjunction with Eqn.(15). We observe from 

Sec.2.1 that in this case, the volume-averaged and mass-averaged velocities are identical, and 

there would be no cause for confusion as to which velocity to use in Eqn.(15). For flows with 

a density contrast, the approach adopted by Antanovskii [19] and Lowengrub and 

Truskinovsky [20], i.e., using the mass-averaged velocity, appears to lead to Eqn.(15). 

However, this approach does not result in a solenoidal velocity field, as discussed in the 

previous section and, indeed, not to the CH equation.  

An attempt to combine a rigorous approach for the derivation of the Cahn-Hilliard 

equation for solenoidal velocity fields with that of the Navier-Stokes equations has been 

presented by Boyer [21], but it involves several approximations for a specific flow 

configuration. There are some further arguments for using Eqns (9)-(10) when attempting to 

solve Eqn.(15). First, when combining these equations with the Navier-Stokes equations, the 

resulting system is essentially a VOF formulation (since the diffuse flux is virtually zero 

outside the interfacial region, and the interfacial region is reduced when the grid is refined), 

with the important difference that the equation for the volume fraction contains a diffusive 

term that allows simple but accurate computation of surface tension and the use of advection 

techniques to track the interface evolution. Secondly, we note that the alternative approach 

adopted e.g. in [19], leads to a non-solenoidal velocity field, which cannot conserve the 

volume in the interfacial region. It is a concern that, in certain circumstances, the diffuse flux 

becomes relatively large. We have observed this in the topology change of the rising bubble 

in Sec. 4.2.2 below. In such events, Eqn. (7b) indicates that the diffuse flux would lead to a 

highly distorted velocity field when the right-hand-side is not required to be zero. This is 

substantiated to some extent by our numerical experiments of the simulation specified in Sec 

4.2.2 below, wherein numerical instability was observed at the onset of the topology change 

when a quasi-incompressible model [19] was used. This drawback is circumvented by the 

modified H model, which decouples the velocity field and the diffuse fluxes in the continuity 

equation (9). Anticipating some of the results presented below, the topology change observed 
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in Sec.4.2.2 and the accompanying relatively large magnitude of the diffuse flux do not affect 

the comparison between the results of the H model and that of previous work using a 

level-set method. 

 

For these reasons, the system of equations of motion for the incompressible two-component 

flows used in the following sections is 

0 u , 16a 

0



ju C

t

C
, 16b 

fuuuu
u





)]([)( Tp

t
  or 16c 

jufuuuu
u





)()]([)(

)(
BA

Tp
t




. 16d 

 

2.3 Free energy and surface tension 

A free energy density model for immiscible isothermal two-phase fluids [9], based on the 

volume fraction C and its gradient, is used here: 

)(12

2
1 CCf   . 17 

Here, f is the free energy per volume,   is the coefficient of surface tension,   is a 

measure of interface thickness, and 22 )1(
4

1
)( CCC   is the bulk energy density, which 

has minima at C=0 and 1, corresponding to the two bulk fluids. The term 
2

2

1
C  

accounts for the excess free energy due to the inhomogeneous distribution of volume fraction 

in the interfacial region. The chemical potential   defined by the variation of free energy 

with respect to the volume fraction C is 

CC
C

F
  




 )(1 . 18 

The diffusive flow rate is taken to be proportional to the gradient of the chemical potential 

[22, 23], and can be written as, 

 Mj , 19 

where 0M  is the mobility. It is instructive to consider the case of a one-dimensional 

interface profile that is at equilibrium. There is then no diffusive flow anywhere and the 

interface profile can be obtained from 0 and Eqn. (18). The one-dimensional solution of 

this equation (with the z-direction chosen along the gradient of C) is 











22
tanh5.05.0)(

z
zC . 20 

Since surface tension can be interpreted as the excess free energy per unit surface area [23], it 
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follows that, for a flat interface at equilibrium, 














 dz

dz

dC
2

 . 21 

Thus, we need to set 26  in Eqn. (18). Finally, the surface tension force in the 

momentum equation can then be written as (see [6, 24]) 

Cstf . 22 

 

2.4 Dimensionless form 

We use here the macroscopic properties of fluid A to define the two-phase flow configuration 

and the dimensionless parameters. Similar to the density (see the discussion just below Eqn. 

(2)), the viscosity is approximated by BA CC  )1(  . Thus, the dimensionless density 

and viscosity are 

 )1(/ CCA   23a 

 )1(/ CCA   23b 

where the density ratio and viscosity ratio are ABAB   / and /  , respectively. 

For simplicity, we shall drop the overline decoration in   and  below. Other 

dimensionless parameters are: a Reynolds number AALU  /Re  , capillary number 

 /Ca UA  and Bond number  /2gLBo A , where L  is a global characteristic length 

scale and U  is a characteristic velocity. Additional parameters in the DI method are a Peclet 

number )/( ccMLUPe  , and a Cahn number LCn / , where cM  and c  are the 

characteristic values of mobility and chemical potential. The resulting dimensionless 

equations of motion are 

0 u , 24a 

0)(
1





M

Pe
C

t

C
u , 24b 

fuuuu
u














)]([

1 T

Re
p

t
 , 24c 

where the mobility depends on the volume fraction through )1()( CCCM  . The final 

term f  represents dimensionless body and interfacial forces. In the simulations reported 
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below that involve rising bubbles, jf 



Bo

C
, where j  represents the vertical direction; 

in the droplet entrainment simulation reported at the end of the paper, 
Ca

C

Re





f . 

 

3. Numerical Methodology 

A staggered grid is used for the finite-volume discretization of Eqn. (24a)-(24c). Scalar 

variables (pressure and volume fraction) are defined at the center of each cell while velocity 

components are defined at the cell faces. A two-dimensional staggered grid is shown in Fig 1; 

the three-dimensional grid used in some of the simulations is a straightforward extension. 

Because the interfacial motion is strongly coupled with the velocity field evolution, it is 

important to solve the CH and NS equations in a temporally matched manner. In order to 

achieve this, we complete computations in the following order, here from time step n to n+1: 

(1) Update the volume fraction field by solving the Cahn-Hilliard equation (24b) with the 

velocity field at timestep n; 

 

(2) Compute the surface tension force in the interfacial region, i.e., Eqn. (22), at timestep 

n+1/2 by using the averaged C value of timestep n and n+1; 

 

(3) Update the velocity field to timestep n+1 by solving the momentum equation (24c) 

and continuity Eqn. (24a). 

 

In Sec. 3.1 and 3.2 below, steps (1) and (3) are described.   

 

3.1 Cahn-Hilliard equation 

The numerical solution of the Cahn-Hilliard equation is complicated by the fact that it is a 

nonlinear fourth-order partial differential equation. Several methods for the solution of this 

equation have been proposed previously [8, 12, 17]. To remove the numerical instability due 

to the variable mobility and the time step constraint that arises from the fourth-order 

diffusion term, the split semi-implicit discretization [8] has been used in the simulations 

reported in this paper. This method is described in details in Ref. [8]; we briefly summarize it 

here. C at time t
n+1

 (denoted here by C
 n+1

) is calculated from 

)],(),(2[                                          

)(
12

11

14

2

12

1

1

2
11

2
3













nnnn

nn
nnn

CACA

CaCa
Pet

CCC

uu

 25 

where  

)()]()([
1

),( 4

2

2

1 CCaCaM
Pe

CA uu   . 26 

The two constants 1a  and 2a  are the approximate/optimal values related to the nonlinear 

mobility, and nn ttt  1  is the time step. Standard central finite difference schemes are 

used for the spatial discretization of the Laplacian operator in the diffusion terms. 
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The advection term in the Cahn-Hilliard equation (the last term on the LHS of Eqn. 26) is 

discretized by an upwinding finite volume scheme. More precisely, the fluxes at the cell faces 

are evaluated with a fifth-order weighted essentially non-oscillatory (WENO) scheme [25], 

using the flow velocity as the upwind direction. The use of upwinding schemes here is 

suggested by the advecting nature of the convective Cahn-Hilliard equation: the )1(O  

advection term generally plays a dominant role in the interfacial evolution (compared to the 

)/( cLO   volume diffuse fluxes), except in regions with high interfacial curvature or where 

singularities such as break-up and coalescence occur (i.e., in regions where Lc  , where Lc 

is the radius of the curvature). Therefore, also given the shock-like profile of C across the 

interface, it is preferred that the local variation is dependent on conditions upstream only, as 

achieved by the present high-order upwinding scheme. The upwinding scheme significantly 

surpresses the over- and under-shoots of C profile across the interface that are normally 

experienced when using a central scheme. 

 

3.2 Momentum equation 

The coupling of the momentum equation and continuity equation is achieved by using a 

standard projection method, which is summarized as follows. First, a viscous solve is 

performed, using Adams-Bashforth for the advective term and Crank-Nicolson for the 

viscous term, resulting in an intermediate velocity *
u : 

   











 


),(),(

2

1
)()(

1 1*1

2
1

2
3

2/1

*
nnnnn

n

n

LL
Re

HH
t




uuuu
uu

, 27 

where H denotes the discrete convection operator and L the discrete diffusion operator. The 

intermediate velocity *
u  is corrected according to  

2/1

2/1*1



 





n

nn p

t 

uu
. 28 

The pressure is obtained from the requirement that the velocity field at time step n+1 is 

divergence-free constraint, i.e., 

 

tn

np



*

2/1

2/1 u








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All spatial discretizations in this subsection are central finite difference schemes. 

 

 

4. Results and discussion 

 

Two cases are considered here to validate and investigate the performance of the present DI 
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model in simulations with a density contrast: the transition of a spherical into a toroidal rising 

bubble, and Rayleigh-Taylor instability. The test case of a rising bubble is first used to 

investigate the convergence and mass conservation properties of the method. We also apply 

the DI model to some other problems of interest  coalescence of binary droplets (with the 

specific aim to investigate the effect of the value of the Peclet number) and the onset of 

entrainment of droplets in stratified flows. Unless otherwise mentioned, we use the Peclet 

number /2Pe  in these simulations. 

 

4.1 Convergence and mass conservation tests 

We first test the convergence and mass conservation properties of the method by simulating 

(in an axisymmetrical domain) a rising bubble with a large viscosity and density ratio 

( 01.0/  lg   and 001.0/  lg  ). The initial configuration is similar to the one 

shown in Fig 2, but the size of the domain is different (2R×4R) and the initial location of the 

bubble is set to 1.6R (from the bubble center to the bottom wall), where R is the initial radius 

of the bubble and is defined as the unit length. Slip and non-penetration boundary conditions 

are enforced at all four boundaries. The Bond number Bo (=  /2gRl ) and Reynolds 

number Re (= ll Rg  /2/32/1 ) based on the properties of the surrounding liquid are 200 and 

100, respectively. The computation stops at the dimensionless time t=1 using a fixed time 

step that is small enough to satisfy numerical stability requirements, on four grids (N×2N): 

40×80, 80×160, 160×320 and 320×640. In one set of simulations, the value of the Cahn 

number is fixed ( 01.0Cn ). In a second case, the value of Cn is varied such that   is 

proportional to the grid size ( h5.0 ), and consequently the Cahn numbers are 0.025, 

0.0125, 0.00625 and 0.003125 on the four grids, respectively. In the latter case, we have also 

computed the corresponding results on intermediate grids 60×120, 120×240, 240×480, such 

that Cn=0.0333, 0.0167 and 0.00833, respectively (known hereafter as the extra set of grids). 

 

In Figures 3 and 4 we show a qualitative comparison of the shape of the bubble obtained 

from different grids by plotting the contour C=0.5 at time t=1. It is seen that successively 

refined grids result only in small differences. A first quantitative comparison between results 

from different grids can be made by determining the velocity at the top of the bubble at t=1. 

When Cn is fixed, the velocity is 0.67030, 0.68088, 0.67897 and 0.67824, respectively on the 

successively refined grids; when Cn is varied as discussed above, the values are 0.6893, 

(0.6864), 0.6819, (0.6794), 0.6773, (0.6767) and 0.6756 respectively, where the solutions on 

the extra set of grids are included in parenthesis. Compared to the finest mesh in each set of 

simulations, the corresponding averaged convergence rates are approximately 1.9 and 1.7, 

respectively. These convergence rates are only for a single point in the flow, however.  

 

A comparison between successively refined grids involving entire fields, in the absence of an 

analytical solution, can be made by computing 
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where ),()( ,2/ tjiN x  denotes the solution of a variable at the cell center ji ,x  on the grid 

(N/2×N) at time t, and 2/Nh  represents the mesh size of the grid (N/2×N).  

 

Results of these convergence studies for the volume fraction C and the velocity components 

are given in Tables 1 and 2. The corresponding results for the convergence rate 

)/(log 22 NN EE  are also presented. The convergence rates for the volume fraction are 1.2 on 

the set of coarse grids: 40×80, 80×160 and 160×320, and 1.0 on the set of fine grids: 80×160, 

160×320 and 320×640. They are approximately 0.8 on the set of coarse grids and 2.3 on the 

set of fine grids for velocity components. The relatively low convergence rates observed at 

coarse grids is arguably due to the value of the Cahn number and the number of grid points 

across the interface. On the 40×80 grid, the case studied in Table 1 corresponds to an 

interfacial thickness of 0.18R, and the coarsest grid in Table 2 corresponds to only three grid 

points are used to resolve the interface. Since further mesh refinement would be desirable but 

require an excessive computational effort, we supplement the results for the (most practically 

relevant) case of a variable Cahn number by using the extra grids mentioned above, of which 

the resolutions are between the coarse and fine set of grids. The results are listed in Table 1. 

The convergence rate for the volume fraction is 0.78, and around 2.8 for velocity components. 

Since these additional data are for intermediate grid sizes compared to those discussed above, 

it appears that these convergence rates oscillates around second-order accuracy for the 

velocity components and first-order for the volume fraction when the grid is refined  

 

Mass conservation is naturally an important issue in numerical simulations of multiphase 

flows. To check the mass conservation properties of the present model, we have recorded the 

volume of the rising bubble at regular time intervals. The bubble volume is computed 

by 2
2 ,

1,1

)1(2)1(2 hCrdACr
NN

ji

iji



  , where r denotes the radial coordinate, and C here 

represents the volume fraction of the liquid fluids surrounding the bubble. We have found 

that the changes in volume are always of the order of machine accuracy in double precision 

during the computation. It is not very surprising to have such a good mass conservation in 

this model since we solve the Cahn-Hilliard equation in conservative form using a 

conservative discretization scheme (finite volume method); the model does not have any 

non-conservative step in advancing the interface as, for instance, the 

reinitialization/redistance step in level-set methods. As a result, the total volume of each 

phase is conserved accurately, and hence the global mass. We re-emphasize here however 

that this volume conservation does not imply that the volume enclosed by any specified C 
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contour (e.g., C=0.5) remains constant; in fact, that is only expected to hold for 0 . 

 

4.2 Validation and applications 

4.2.1 Rayleigh-Taylor instability 

Rayleigh-Taylor instability would occur for any perturbation along the interface between a 

heavy fluid (A) on top of a lighter fluid (B), and is characterised by the density difference 

between the two fluids. The density difference is represented by the Atwood ratio 

)/()( BABAAt   . The initial growth and long-time evolution of Rayleigh-Taylor 

instability has been investigated by Tryggvason [26] for inviscid incompressible flows with 

zero surface tension, at At=0.50. Guermond et al [27] studied this stability problem at the 

same value of At but accounted for viscous effects. We validate our code here by 

investigating the same problem as Guermond et al [27], i.e., at At=0.50 and Re 

(  /2/12/3 gdA ) =3000, with the initial interface being located in a rectangular domain [0, 

d]×[0, 4d] at )/2cos(1.02)( dxddxy  , which represents a planar interface 

superimposed by a perturbation of wave number k=1 and amplitude 0.1d. In the present case 

of zero surface tension, the Cahn-Hilliard equation simply amounts to interface tracking only. 

Computations are carried out on a 200×800 grid, the Cahn number is proportional to the 

mesh size h as 0015.03.0  hCn  and the timestep t  is set to 0.00035. Results are 

presented in Fig. 5, in terms of the y-coordinate of the top of the rising fluid and the bottom 

of the falling fluid, together with the corresponding previous results of Tryggvason [26] and 

Guermond et al [27]. Good agreement is observed with these results. The evolution of the 

interface is shown in Fig. 6 at dimensionless times t=0, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, in 

which the rolling-up of the falling fluid can be clearly seen. At the early time, two 

counter-rotating vortices are formed along the sides of the falling filament and grow with 

time. To a certain extent, the two vortices are shed and a pair of secondary vortices occurs at 

the tails of the roll-ups. This interesting nonlinear evolution has been investigated 

numerically by many researchers [26-29]. The interfacial patterns obtained in this work 

appear to compare well with those in [26, 27]. 

 

4.2.2 Axisymmetrical rising bubble 

We revisit here the test case of the axisymmetrical rising bubble of Sec.4.1, in order to 

compare with previous work [31] to validate the model. The configuration is shown in Fig. 2, 

and the properties of the fluids here are the same as the convergence tests in Sec. 4.1. The 

simulation is conducted on a grid 201×401 and the Cahn number Cn  is set to 0.007. At late 

times the bubble evolves into a toroid (this change of topology is investigated in more detail 

in [30]). Our numerical simulation shows that the bubble breaks up at t=1.61, and the 

topology change occurs at the top of the bubble, more precisely at y=4.09R. These are in very 

good agreement with the results of Sussman and Smereka [31], who obtained t=1.60 and 

y=4.05R, respectively. The shape of the bubble at t= 1.6 is represented in Fig. 7 by the 

contour C=0.5, which almost matches exactly with the result from Ref. [31] presented on the 
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right of the figure. The instantaneous shapes of the bubble at times t=0, 0.2, 0.4, 0.6, 0.8, 1, 

1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4, 2.6, 2.8 and 3 are shown in Fig. 8. They also agree well with the 

results in Ref. [31]. 

 

4.2.3 Head-on collision and coalescence of binary droplets; effect of Pe 

We consider here the application of the model for interfacial interaction, i.e., coalescence, by 

simulating the head-on collision of binary droplets at large density ratios. The density ratio 

  and viscosity ratio   between the droplets and the ambient fluid are 1000 and 100, 

respectively. The dimensionless numbers are the Weber number  /2RUWe   and the 

Reynolds number  /Re UR , where R is the initial radius of the droplet and U is the 

relative velocity of the droplets at collision. In the present study, the Weber and Reynolds 

number are set to 16 and 50, respectively. 

 

Simulations of the axisymmetrical binary droplet collision were carried out in a domain 

( 82 ) on a 401101  mesh. Slip and no-penetration boundary conditions are imposed at all 

boundaries of the computational domain, except for the symmetry axis. Both droplets is 

resolved, i.e., symmetry is not imposed between the two droplets. The droplets are initially 

located side by side at a center-to-centre distance of 4R, and then accelerated by an attractive 

force until collision occurs. The magnitude of the force was chosen such that the impact 

velocity is approximately equal to U. The simulations were conducted on a personal 

computer with an Intel Pentium D (dual core) CPU 3.40GHz and 2G RAM. The time step Δt 

was set to 0.0008T and the program was run up to time 24T, where T = R/U. It took a CPU 

time of approximately three hours to complete this simulation. 

 

The results are presented in Fig. 9 for two different values of the dimensionless mobility 

parameter Pe. The mobility parameter, which relates the rate of advection of the fluid flow to 

the rate of interfacial diffusion, is expected to influence results of simulations of coalescence. 

For a careful selection of the value of the mobility, Jacqmin [6] suggested that it must be 

asymptotically small when the thickness of the diffuse interface approaches zero, 

e.g., M  where 21  , based on the analysis of the scales in the phase field flow 

physics. In Fig. 9 the effect of the value of Pe on a head-on collision is investigated, by 

comparing the results for /1Pe  and /4 . In Fig. 9 we show the instantaneous shape of 

the collided droplets (C=0.5 contours) at different times after the impact. It is interesting to 

observe that a tiny toroidal bubble has been trapped at the center of the coalesced droplet. In 

the case of the higher value of Pe, we can clearly observe how the toroidal bubble gradually 

becomes spherical. However, because the radius of the tiny bubble is comparable to the 

thickness of the diffuse interface, the volume inside the contour of C=0.5 becomes smaller 

and smaller with time, hence a thinner interface (through mesh refinement to ensure that 

R , where R is the radius of the bubble) would be needed to improve the simulations in 

this respect. We also see in the final frames that the eventual single droplet has undergone a 
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slight unphysical displacement off the centerline (it has been verified that this displacement is 

reduced upon grid refinement). In the case of the lower value of Pe, the small bubble 

disappears even before it can become spherical. The reason for this is that diffuse fluxes are 

then relatively large compared and thus dissolves the tiny bubble in a short time after the 

collision. 

 

4.2.4 Onset of droplet entrainment 

Finally, we consider a possible application of the method: pressure-driven stratified 

Poiseuille flow in a 3D channel, where a lighter fluid shears over a heavier fluid. The onset of 

droplet entrainment is observed, resulting from the evolution of a small disturbance to the 

interface. The density and viscosity ratio   and   between the heavier and lighter fluids 

are both set to 10; the Reynolds number and capillary number in terms of the flow properties 

of the lighter fluid are set to 100 and 1, respectively. The pressure drop in the channel is unity. 

The simulation is performed on a 161×41×161 grid, corresponding to a domain of size 

1×0.25×1. Periodic boundary conditions are enforced in the streamwise and transverse 

directions. Initially, the interface is located at z = 0.5, i.e., halfway the channel height, and 

transverse and streamwise waves are superimposed. The interface shape is  

)2cos()2cos(5.0)( 2211 ykaxkazs   . 30 

where x represents the streamwise direction and y the transverse direction. We choose 

here 075.01 a , 1.02 a , 11 k  and 42 k . The initial velocity field is the analytical 

uni-directional flow  
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where )1/()5.15.0(   m .  

 

The simulation results show that the wave crests are greatly elongated by the base flow (31). 

Eventually liquid droplets and gas bubbles are formed at the tip of the elongated interfaces. A 

snapshot of the simulation at the moment of droplet formation is shown in Fig. 10a. The 

onset of droplet entrainment can be clearly observed at the wave crests. Similarly, the troughs 

of the waves evolve into an elongated shape, and it is expected that these will break up at a 

later time into bubbles. A snapshot at a later time is shown in Fig. 10b, wherein the liquid 

droplets formed above the interface and longer gas troughs below the interface are 

noticeable. 

 

 

5. Conclusion 

We have investigated the applicability of diffuse interface model, specifically the so-called 

modified H Model, for numerical simulations of incompressible two-phase flows of fluids 

with a large density ratio. All the modelling issues are addressed in the framework of binary 
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mixtures, and on the assumption that the volume diffusive flows between the two phases are 

only dependent on the compositionnot the density. As a result, it follows that the velocity 

field is divergence free and the Cahn-Hilliard equation (with the volume fraction as the order 

parameter) can be derived in a straightforward manner from the continuity equation, 

regardless of the density ratio of the fluids. We have also shown that the global volume can 

be conserved, which has also been confirmed by numerical tests. Numerical simulations 

show that the model can be applied to a wide range of two-phase problems with large density 

and viscosity ratio, such as the topology change of bubbles and the coalescence of binary 

droplets, and to industrial applications such as oilfield-related pipe flow. 

 

Specific advantages of the DI method are that it can accurately conserve global mass, and is 

relatively easy to implement. On the other hand, it requires rather many grid points to 

achieve a smooth variation of dependent variables in a sufficiently narrow interfacial region. 

This restricts the ability of DI methods in resolving small interfacial structures, e.g., to a 

scale comparable to the interface thickness, which is comparatively larger than its 

counterparts (VOF and LS) on the same grid.  
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Table 1 Convergence study using a variable Cahn number. Details of the test cases are given 

in the text. 

Grids C zu  ru  

 )(CEN
 )/(log 22 NN EE  )( zN uE  )/(log 22 NN EE  )( rN uE  )/(log 22 NN EE  

40×80 0.0592 
1.18 

0.0731 
0.83 

0.0526 
0.82 

80×160 0.0262 0.0412 0.0298 

1.04 2.19 2.43 
160×320 0.0128 0.00902 0.00552 

60×120 0.0406 
0.78 

0.0788 
2.76 

0.0636 
2.88 

120×240 0.0236 0.0116 0.00731 
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Table 2 Convergence study using a fixed Cahn number. Details of the test cases are given in 

the text. 

Grids C zu  ru  

 )(CEN  )/(log 22 NN EE  )( zN uE  )/(log 22 NN EE  )( rN uE  )/(log 22 NN EE  

40×80 0.0124 
2.02 

0.0349 
0.72 

0.0187 
0.79 

80×160 0.00307 0.0212 0.0108 

1.41 2.50 2.17 
160×320 0.00116 0.00373 0.00241 
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Fig. 1 Two-dimensional staggered grid on which flow variables are defined:   vertical 

component of velocity,   horizontal component of velocity,   scalar variables (pressure 

and volume fraction). 
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Fig. 2 Problem definition sketch for the simulation of a rising bubble. Values of fluid 

properties are stated in the main text. 
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Fig. 3 Comparison of the instantaneous shape of a bubble (see Fig.2) at t=1 using a variable 

Cahn number as explained in the main text. Dash-dotted line denotes the solution on a 40×80 

grid, dashed line the solution on a 80×160 grid, the dash-dot-dotted line represents the 

solution on a 160×320 and solid line the solution on 320×640 grid. The difference between 

solutions on the grids of 320×640 and 160×320 is indistinguishable. 
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Fig. 4  As Fig.3 but for a fixed value of the Cahn number. 
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Fig. 5 The y-coordinate of the tip of the falling and rising fluid versus time: solid line denotes 

the present solution, the open diamonds represents the solution of Tryggvason [26] and the 

filled triangles that of Guermond et al [27]. 
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t=0        t=1        t=1.25          t=1.5 

 

t=1.75      t=2          t=2.25            t=2.5 

 

Fig. 6 Rayleigh-Taylor instability simulation at different times. 
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Fig. 7 Comparison of bubble shape with previous work at time t= 1.6. Dashed line denotes 

present result and solid line denotes the result from Sussman et al. [31]. 
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Fig. 8 Interface shapes of the bubble at time t= 0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 2.2, 

2.4, 2.6, 2.8 and 3 (from left to right and from bottom to top). 
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Fig. 9 Evolution of interface shapes for the head-on collision of droplets at times t= 0, 0.4, 0.8, 

1.2, 1.6, 3.6, 5.6, 9.6, 13.6 and 20 (from left to right). The upper results are for a value of the 

Peclet number Pe = 4/ε, the lower results are for Pe = 1/ε. 
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(a) 

 

(b) 

 

Fig. 10 Onset of droplet entrainment in stratified flow at Re=100 and Ca = 1 (a) at the 

moment breakup occurring (b) at a later time. 


