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We derive a flat-interface model to describe the flow of two horizontal, stably strat-
ified fluids, where the bottom layer exhibits non-Newtonian rheology. The model
takes into account the yield stress and power-law nature of the bottom fluid. In
the light of the large viscosity contrast assumed to exist across the fluid interface,
and for large pressure drops in the streamwise direction, the possibility for the upper
Newtonian layer to display fully-developed turbulence must be considered, and is de-
scribed in our model. We develop a linear-stability analysis to predict the conditions
under which the flat-interface state becomes unstable, and pay particular attention
to characterizing the influence of the non-Newtonian rheology on the instability. In-
creasing the yield stress (up to the point where unyielded regions form in the bottom
layer) is destabilizing; increasing the flow index, while bringing a broader spectrum
of modes into play, is stabilizing. In addition, a second mode of instability is found,
which depends on conditions in the bottom layer. For shear-thinning fluids, this
second mode becomes more unstable, and yet more bottom-layer modes can become
unstable for a suitable reduction in the flow index. One further difference between
the Newtonian and non-Newtonian cases is the development of unyielded regions in
the bottom layer, as the linear wave on the interface grows in time. These unyielded
regions form in the trough of the wave, and can be observed in the linear analysis
for a suitable parameter choice.

Keywords: Herschel-Bulkley fluids; Turbulence; Interfaces; Instability

I. INTRODUCTION

We investigate the linear instability of two-layer pressure-driven flow in two dimensions
as a model of conditions that commonly occur in industry: examples include the transport
of waxy crude oils [1], and the removal of a layer of a non-Newtonian fluid by a Newtonian
fluid (e.g. in the cleaning of surfaces, see [2]). Indeed, at present, it seems unclear whether
interfacial waves have sufficient time to grow during cleaning operations, and in this context,
it is important to formulate a predictive model for the growth rate of these waves. Previous
work on this subject (reviewed briefly below) has been primarily for laminar flow conditions;
studies on turbulent flows shearing past a viscous film has, to our knowledge, been confined
to Newtonian fluids. In this paper we consider two-layer flows wherein the flow of the less
viscous fluid is turbulent, and the more viscous fluid is a Herschel–Bulkley fluid and its
motion is assumed to be laminar.

Previous work on the laminar Newtonian two-layer problem (cf. [3]) has shown the domi-
nance of the so-called Yih-mode (or interfacial mode, see [4]), which is driven by the jump in
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viscosity (and hence shear rate) across the interface that leads to transfer of energy from the
base state into the disturbance (cf. [5]). Only at sufficiently large Reynolds number values
is a shear (or internal) mode observed, which is driven by energy transfer due to work done
by the shear flow in the less-viscous layer away from the interface, and has a growth rate
that is much lower than that of the interfacial mode.

Similar mechanisms have been found to dominate the instability of Newtonian films
sheared by a turbulent flow, but the shear mode is dominated here by energy transfer in
the liquid film (cf. [6]): again, an interfacial instability mechanism is dominant with the
exception of small regions in parameter space. Incidently, the dominance of interfacial
instability shows the importance of the inclusion of a viscous sublayer in the turbulent base
state velocity profile near the interface. Ó Náraigh et al. [7, 8] found a transition to a
Miles-type instability [9] only for very high Reynolds-number flows past liquid films, and

for relatively thick films (i.e., fast waves). The study of Ó Náraigh et al. [7] showed that
inclusion of perturbation turbulent stress terms in the analysis (with rapid distortion theory)
has little effect on the prediction of the growth rate and wave speed, with the exception of
fast waves. The flow pattern of the disturbance is affected by this, however.

In the present paper we investigate the corresponding problem for a liquid film consisting
of a Herschel–Bulkley fluid. This problem has, to our knowledge, only been investigated for
laminar conditions, and even then, only well away from a critical condition for the onset of
unyielded regions to form [10]. The paper is organized as follows. In Sec. II we develop a base-
state model that takes account of turbulence in the upper layer and non-Newtonian rheology
in the lower layer. In Secs. III and IV we carry out a linear-stability analysis around the
well-yielded base state (i.e. far from criticality), and demonstrate that the main differences
between the Newtonian and inelastic non-Newtonian systems are primarily quantitative,
the growth rate being affected by the difference in viscosity contrast across the interface (a
similar result was found in the fully laminar case [10]). Next (Sec. VI), and in contrast to
the study of Sahu et al. [10], we investigate flow conditions close to the critical value of the
Bingham number, beyond which unyielded regions are formed. For flow conditions wherein
an unyielded region is present in the base state, the system is superstable [11]; instead, we
focus on base-state conditions wherein the Herschel–Bulkley layer is fully yielded, albeit
barely so. We demonstrate that unstable waves will eventually grow to reach a point where
unyielded regions may form. In this region of parameter space, the parallelism between
Newtonian and non-Newtonian flows that held at lower Bingham numbers breaks down,
and mode competition occurs, leading to the sidelining of the interfacial mode. Finally, in
Sec. VII we present our conclusions.

II. THE FLAT-INTERFACE MODEL AND ITS PROPERTIES

In this section we derive a base state appropriate for a two-layer system in a channel,
described schematically in Fig. 1. [LON: This idealised scenario is motivated by the practical
problem of removal of viscous soils in industrial plants during cleaning and product turnover
operations. Standard practice is to displace the more viscous product fluid (which initially
fills entire pipelines) by water, resulting in viscous films being left behind on pipe walls by
a finger of water. These films are sheared by the continued water flow, and we expect the
resulting film displacement to be strongly influenced by the evolution of waves on the film
surface.]

[LON: The base state we consider is due to Reynolds averaging of the turbulent system,
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FIG. 1: A schematic diagram of the base flow. In this work, the bottom layer is laminar with
non-Newtonian rheology, while the top layer exhibits fully-developed turbulence, described here by
a Reynolds-averaged velocity profile. A pressure gradient in the x-direction drives the flow.

and represents] an equilibrium state, in the sense that the average velocities are independent
of time, and the average interfacial height that demarcates the phases is flat. [LON: This
approach, replacing instantaneous fluctuating fields with an averaged profile, is appropriate
when the turbulent eddies turn over very slowly compared with the growth time of the waves,
which is certainly the case here [12]. The correctness of this approach is further confirmed
by the accurate predictions it gives for the critical Reynolds number of interfacial instability
in the turbulent Newtonian case [6, 8, 13].] The bottom layer is a laminar liquid layer with
non-Newtonian rheology, while the top layer is turbulent and fully-developed. A pressure
gradient is applied along the channel. The mean profile of the system is a uni-directional
flow in the horizontal, x-direction. In the top layer, near the interface (z = 0) and the wall
(z = h), the flow profile is linear, and the viscous scale exceeds the characteristic length
scale of the turbulence [14, 15]. In the top-layer core, the flow possesses a logarithmic
profile [14, 15]. We also assume that the interface is smooth. The growth rate of the wave
amplitude depends sensitively on the choice of mean flow and it is necessary to derive a mean
flow-profile that incorporates the characteristics of the flow observed in experiments. In this
section, we therefore generalize the model of Ó Náraigh et al. [8] which coupled laminar
bottom-layer and turbulent top-layer flows to take into account the possibility of having a
non-Newtonian bottom layer.

A. The mean-flow profile

The bottom layer: In this section we focus on the case where the base flow in the non-
Newtonian layer is fully yielded. (We discuss other possible flow configurations in Sec. II C.)
Thus, the velocity is non-zero everywhere except at the bottom wall (no slip), and the profile
is determined from a balance between viscous and pressure forces:

∂

∂z

(
µ

∂UB

∂z

)
− ∂p

∂x
= 0, (1)
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where UB denotes the liquid mean flow velocity and the pressure gradient ∂p/∂x, con-
tains partial derivatives because hydrostatic balance is imposed in the vertical direction,
−∂pj/∂z = ρjg, in which j = B, T labels the phase. For flow from left to right, we have
∂p/∂x < 0. The viscosity µ is non-constant in a non-Newtonian fluid and is constituted as

µB = kΠn−1 + τ0Π
−1 (2)

where Π is the second invariant of the rate-of-strain tensor,

Π =
√

2EijEij, Eij = 1
2

(
∂ui

∂xj

+
∂uj

∂xi

)
(3)

For fully-yielded flows, the division by zero implied by Eq. (2) does not occur, since the rate
of strain is non-zero and positive. Thus, ∂UB/∂z is positive throughout the liquid film, and
for uni-directionl shear flow U = (U (z) , 0), we obtain the relation Π = |∂UB/∂z| = ∂UB/∂z,
where the last equation holds for a fluid that has no unyielded regions. We integrate Eq. (1)
twice and obtain the result

UB = c3 − n

n + 1

1

|∂p/∂x|
1

k1/n

(
−

∣∣∣∣
∂p

∂x

∣∣∣∣ z − c2 − τ0

)1+1/n

, (4)

where c2 and c3 are constants of integration that we determine. The shear stress at the
interface is a constant, and given by

τi = µ
∂UB

∂z

∣∣∣∣
z=0

. (5)

For fully-yielded systems, where the interfacial shear stress is sufficient to overcome the yield
stress and precipitate flow in the non-Newtonian layer, we have the condition τi > 0. Thus,
µ (∂UB/∂z)z=0 is simply k (∂UB/∂z)n

z=0 + τ0, and Eq. (5) becomes

k

(
∂UB

∂z

)n

z=0

+ τ0 = τi > 0,

where the strict inequality holds for a fully yielded fluid. The gives the condition τ0 < τi,
that is, the stress applied to the interface must exceed the yield stress. Next, we determine
the constants of integration. From Eq. (4), (∂UB/∂z)n

z=0 is simply (c2 + τ0) /k, and hence
c2 = −τi. Furthermore, applying the no-slip condition at the channel bottom z = −dB fixes
c3, and we have the velocity profile

UB =
n

n + 1

1

k1/n

1

|∂p/∂x|

[(
dB

∣∣∣∣
∂p

∂x

∣∣∣∣ + τi − τ0

)1+1/n

−
(
−

∣∣∣∣
∂p

∂x

∣∣∣∣ z + τi − τ0

)1+1/n
]

(6)

Next, we non-dimensionalize this equation using the upper-layer thickness h, the pressure
h|∂p/∂x|, and the upper-layer superficial velocity ρT U2

0 = h|∂p/∂x|:

ŨB =
n

n + 1

Re0

m

[(
δ +

Re2
∗

Re2
0

−Bn

)1+1/n

−
(
−z +

Re2
∗

Re2
0

−Bn

)1+1/n
]

(7)

where we have introduced the following important non-dimensional groups:
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1. The viscosity contrast m = µe/µT , where µe is the effective liquid viscosity µe =

h|∂p/∂x| [k/ (h|∂p/∂x|)]1/n;

2. The Reynolds number Re0 = ρT hU0/µT ;

3. The friction Reynolds number Re∗ = (ρT h/µT )
√

τi/ρT = ρT hU∗i/µT ;

4. The Bingham number Bn = τ0/ (h|∂p/∂x|);
5. The aspect ratio δ = dB/h.

Note that Eq. (7) reduces to the following form for the Newtonian case (Bn, n) = (0, 1):

ŨB =
Re0

2m

[(
δ +

Re2
∗

Re2
0

)2

−
(
−z̃ +

Re2
∗

Re2
0

)2
]

, m = k/µT ,

for which
(
∂ŨB/∂z̃

)
z=0

= Re2
∗/ (mRe0). The friction Reynolds number is as yet unde-

termined, although it is available as a function of the control parameter Re0 by careful
consideration of the flow in the upper layer, to which we now turn.

The top layer: The RANS equation in the top layer is

µT
∂UT

∂z
+ τTSS = τi +

∂p

∂x
z, (8)

where τTSS = −ρ〈u′w′〉 is the turbulent shear stress due to the averaged effect of the turbu-
lent fluctuating velocities. In general and a priori, there is no way of constituting this stress
contribution in terms of averaged velocities and pressures, and a closure must be sought.
We use the closure described by Ó Náraigh et al. [8], which was shown to give rise to a
base state and linear-stability predictions that agree well with direct numerical simulations
and experiments; it is a small step to generalize it here to the non-Newtonian lower-layer
rheology. Thus, we constitute the turbulent shear stress as follows:

τTSS = κρT hU∗wG (z̃) ψi (z̃) ψw (1− z̃)
∂UT

∂z
, (9)

where κ is the Von Kárman constant, U∗w is the friction velocity at the upper wall, and is
related to the friction velocity at the interface through the relation U2

∗i/U
2
∗w = R, with the

ratio R constituted below. The interpolating function G has the following form [16]:

G (s) = s (1− s)

[
s3 + |R|5/2 (1− s)3

R2 (1− s)2 + Rs (1− s) + s2

]

︸ ︷︷ ︸
=V(s)

0 ≤ s ≤ 1, (10)

while we use a Van-Driest type of formalism [15] for the wall functions ψi and ψw:

ψi (s) = 1− e−sp/Ai , ψw (1− s) = 1− e−(1−s)n/Aw . (11)

The input parameters p, Ai, and Aw are chosen such that p = 2, and such that the interfacial
and wall laminar sublayers are five interfacial (wall) units in extent. [LON: Moreover,
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FIG. 2: Solutions to the base-state model with a turbulent upper layer, with comparisons to the
equivalent laminar flow profile, r = 2, m = 10, and δ = 0.2. The turbulent Reynolds number is
Re0 = 1000 , while the laminar Reynolds number is chosen such that the laminar and turbulent
flow rates match. Figures (a) and (b) show the solution for Bn = 0 and various n-values in the
entire domain and in the bottom layer respectively; a comparison with the laminar case at n = 1
is shown in (a). Figures (c) and (d) show the solution for Bn = 0.3 and various n-values.

implicit in our choice of G-function is the assumption that interfacial roughness is small,
in the sense described by that is, there is no surface roughness, in the sense described
by Miles [9], Akai and co-workers [17, 18], and Biberg [16]. This assumption is valid for
low-intensity turbulence, and alters the results only qualitatitively at higher intensities.]

Next, we solve for the velocity profile up to quadrature. Substituting Eq. (9) into Eq. (8)
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gives the formula

UT (z) = UT (0) + τih

∫ z/h

0

(
1 + h

τi

∂p
∂x

s
)

ds

µT + κρT hU∗wG (s) ψi (s) ψw (1− s)
,

= UT (0) + τih

∫ z/h

0

(
1 + h

τi

∂p
∂x

s
)

ds

µT + κρT hU∗i√
|R| G (s) ψi (s) ψw (1− s)

, (12)

where R = τi/τw. Non-dimensionalizing and using the matching condition

ŨT (0) = ŨB (0) =
n

n + 1

Re0

m

[(
δ +

Re2
∗

Re2
0

−Bn

)1+1/n

−
(

Re2
∗

Re2
0

−Bn

)1+1/n
]

,

this is

ŨT (z̃) =
n

n + 1

Re0

m

[(
δ +

Re2
∗

Re2
0

−Bn

)1+1/n

−
(

Re2
∗

Re2
0

−Bn

)1+1/n
]

+
Re2

∗
Re0

∫ z̃

0

(
1− Re2

0

Re2∗
s
)

ds

1 + κRe∗√
|R|G (s) ψi (s) ψw (1− s)

. (13)

The ratio R can be obtained in closed form as follows. Since

τ (z) = τi +
∂p

∂x
z,

= −τw +
∂p

∂x
(z − h) ,

these formulas can be equated to give

τi = −τw − ∂p

∂x
h,

hence,

|R| =
∣∣∣∣∣1−

(
Re0

Re∗

)2
∣∣∣∣∣

−1

.

Finally, Re∗ is determined as the zero of the function Ũ (1; Re∗) = 0, or

n

n + 1

Re0

m

[(
δ +

Re2
∗

Re2
0

−Bn

)1+1/n

−
(

Re2
∗

Re2
0

−Bn

)1+1/n
]

+

{
Re2

∗
Re0

∫ 1

0

(
1− Re2

0

Re2∗
s
)

ds

1 + κRe∗√
|R|G (s) ψi (s) ψw (1− s)

}

|R|=
∣∣∣1−(Re0

Re∗ )
2
∣∣∣
−1

= 0. (14)
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FIG. 3: Solutions to the base-state model with a turbulent upper layer, where Re0 = 1000, r = 2,
m = 10, and δ = 0.2. (a) Dependence of UT,max/UB,max on Bingham number, with n = 1. The
condition for the liquid layer to contain no unyielded regions is Re∗ ≥

√
BnRe0; (b) dependence

of UT,max/UB,max on the flow index, with Bn = 0.

In summary, we have the following velocity profile in the base state:

Ũ (z̃) =

n

n + 1

Re0

m

[(
δ +

Re2
∗

Re2
0

−Bn

)1+1/n

−
(
−z +

Re2
∗

Re2
0

−Bn

)1+1/n
]

, −δ ≤ z̃ ≤ 0,

Ũ (z̃) =
n

n + 1

Re0

m

[(
δ +

Re2
∗

Re2
0

−Bn

)1+1/n

−
(

Re2
∗

Re2
0

−Bn

)1+1/n
]

+
Re2

∗
Re0

∫ z̃

0

(
1− Re2

0

Re2∗
s
)

ds

1 + κRe∗√
|R|G (s) ψ (s) ψ (1− s)

, 0 ≤ z̃ ≤ 1. (15)

Solutions to this equation are shown in Fig. 2 for various flow indices and Bingham numbers.
Also shown is a comparison with what the laminar profile would be if such a flow config-
uration could be sustained at the same flow rate: the turbulent and laminar profiles are
substantially different. In Fig. 3, we demonstrate the dependence of the maximum velocity
on the Bingham number and flow index, at a fixed Reynolds number. By re-arranging these
data, and using the equation (15), we obtain the dependence of the characteristic Reynolds
numbers

ReT,max =
Re0UT,max

U0

, ReB =
Re0UB (0)

U0

rµe

δmµB,max

,

on the flow parameters n and Bn. The results of this re-arrangement are shown in Fig. 4,
which demonstrates that even at small values of the viscosity and density contrasts (specifi-
cally, r = 2 and m = 10), it is possible to generate a large Reynolds-number contrast across
the interface. This contrast is enhanced for Bingham and shear-thickening fluids, whose
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(a) (b)

FIG. 4: Solutions to the base-state model with a turbulent upper layer, where Re0 = 1000, r = 2,
m = 10, and δ = 0.2. (a) Dependence of ReT,max and ReB,max on Bingham number, with n = 1.
The parameter ReB,max decreases with increasing Bn; (b) dependence of ReT,max and ReB,max on
the flow index, with Bn = 0. The parameter ReB,max decreases (relative to the Newtonian fluid) for
shear-thickening fluids. These two results demonstrate possibility that even at small values of the
density and viscosity contrasts, it is possible to generate a large Reynolds-number contrast across
the interface, which points to the realism of modelling a laminar non-Newtonian layer sheared by
a turbulent, Newtonian, upper layer.

viscosity is enhanced at larger Bn- and n-values respectively. This underscores the realism
of the physical system described by Fig. 1, namely a non-Newtonian, laminar bottom layer
sheared by a Newtonian, fully-developed, turbulent upper layer. In summary, the results
of Figs. 2 and 4 suggest that we should expect significant differences between the stability
properties of the laminar and turbulent systems with respect to a linear stability analysis,
which is the subject of Sec. III

B. Accuracy of the base-state model

To our knowledge, the turbulent profiles described here have not been measured in ex-
periments or by direct numerical simulation (DNS). These measurements have been made
for fully Newtonian systems however, and in those situations, the model used here pro-
vides accurate predictions. In particular, Ó Náraigh et al. [8] have compared the fully
Newtonian, laminar-turbulent base state with the DNS results of Solbakken and Ander-
sson [19], and excellent agreement is obtained. They also verified that the single-phase,
Newtonian, fully-turbulent version of the model agrees with experiments. Furthermore, a
linear-stability analysis based on this fully Newtonian base state provides predictions for the
critical Reynolds number of instability that are in excellent agreement with the experiments
of both Craik [20], and Cohen and Hanratty [21]. Since the turbulent modelling affects only
the upper layer, and since this layer is the same regardless of the rheology of the bottom
layer, we are confident in the generalization we have performed in applying this turbulence
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model to the present case.

C. The critical Bingham number

In Sec. IIA we investigated base-flow configurations for which the interfacial shear stress
τi was sufficient to overcome the Bingham nature of the non-Newtonian layer and cause the
liquid to flow throughout the channel. Specifically, we had the condition Re∗ >

√
BnRe0,

suggesting a critical Binghan number Bnc = Re2
0/Re2

∗. In this section we investigate cases
where unyielded domains form as a result of the finite yield stress (Bn ≥ Bnc). To take
account of the singularity in the viscosity µ ∼ kΠn−1 + Bn/Π as the rate of strain Π tends
to zero, we introduce a regularization in the expression (2), valid at small strain rates, while
for simplicity, we focus on fluids with power-law index n = 1. While the convergence of
the regularized model to the singular model has been found to be problematic [22, 23], our
application of this regularization is not to the linear-stability analysis itself, but is simply a
means of giving a qualitative description of the formation of unyielded regions in the wavy
state, given a fully-yielded base state; this is done in Sec. VI. Thus, the regularization
introduced here can be regarded as a simple expediency, and casts no doubt on the results
of the linear-stability calculations.

The regularized, so-called bi-viscosity Herschel–Bulkley model takes account of the singu-
larity as Π → 0 by the introduction of a regularized viscosity at low shear rates [22, 24–27]:

µ =

{
µ0, Π ≤ Π0

kΠn−1 + τ0Π
−1, Π ≥ Π0

. (16a)

Integrating the momentum balance equation and non-dimensionalizing in the usual way
(with π0 = Π0/ (ρT U2

0 )), we obtain the velocity profile

UB =





U (0) + z

(
π0Re0 − Re0h0

m
1

1+ Bn
π0m

)
− 1

1+ Bn
π0m

Re0

2m
z2, −h0 < z < 0,

1
m

(
Re2∗
Re2

0
−Bn

)
(z + δ)− Re0

2m
(z2 − δ2) , −δ < z < −h0,

(16b)

and the stress

τB =

{
1

Re0

(
m + Bn

π0

)
dUB

dz
, −h0 < z < 0,

1
Re0

dUB

dz
+ Bn, −δ < z < −h0.

(16c)

Note that the second derivative of the stress is continuous, while the second derivative of UB

is not. The constant h0 is determined by the stress at the interface and the pressure drop:

h0 = mπ0 + Bn− Re2
∗

Re2
0

. (16d)

When 0 < h0 < δ there is a yield surface at z = −h0, across which the viscosity changes
character. The presence or otherwise of the yield surface gives rise to three distinct regimes,
listed as follows and depicted schematically in Fig. 5.

1. Well-yielded flows: These are flows for which h0 < 0, and thus the crossover into the
regularized zone is never attained.
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FIG. 5: Summary of scenarios given by solution of Eqs. (16).

2. Quasi-yielded flows: These are flows for which 0 < h0 < δ. Then, the base state in the
non-Newtonian layer consists of a plug flow near the interface (the ‘unyielded region’),
and a boundary near the solid wall z = −δ where the flow tranistions smoothly to
zero.

3. Unyielded flows: These are flows for which h0 > δ, and for which the viscosity attains
its maximal value everywhere in the non-Newtonian flow domain. The magnitude of
the velocity is very small everywhere.

Cases (2) and (3) can be treated within the framework of single-phase flow [11], and are
not considered here. Thus, in Secs. III–V we focus on case (1). Of interest too is the
parameter regime in which the critical Bingham number Bnc is approached from below,
which we call the barely-yielded regime. This is the focus of Sec. VI, where we demonstrate
that linear waves that develop from a fully-yielded state can produce unyielded regions near
the interface.

III. LINEAR-STABILITY ANALYSIS: INTERFACIAL MODE

In this section we outline a linear-stability analysis that determines the conditions under
which the interface of the two-phase system becomes unstable. For viscous, parallel, incom-
pressible flow, the stability analysis reduces to an eigenvalue problem in a single equation (the
Orr–Sommerfeld equation). We generalize this approach to turbulent stratified flow by per-
forming a stability analysis on the flat-interface Reynolds-averaged Navier–Stokes (RANS)
equations. We introduce a numerical method for the solution of the eigenvalue problem
produced by our Orr–Sommerfeld analysis. We verify this numerical method against results
for laminar flow.

A. Orr–Sommerfeld analysis

The base state Uj (z) = (Uj (z) , 0), j = B, T is a parallel flow given by the model
equations in Sec. II. Infinitesimal perturbations to the base state are described by the
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linearized RANS equations:

rj

(
∂uj

∂t
+ Uj · ∇uj + uj · ∇Uj

)
= ∇ · Tj +∇ · TRey,j − rj

(
gh

U2
0

)
ẑ (17a)

∇ · uj = 0, (17b)

where rB = r, and rT = 1. In the non-Newtonian layer, the turbulent component of the
stress tensor is aassumed to be zero, while the viscous component of the stress tensor has
the form

Txx,B = −p +
2µ0

Re0

∂u

∂x
, Tzz,B = −p +

2µ0

Re0

∂w

∂z
,

Txz,B =
µ0

Re0

(
∂u

∂z
+

∂w

∂x

)
+

β0

Re0

dUB

dz
π,

where

µ0 = m

(
dUB

dz

)n−1

+ Bn

(
dUB

dz

)−1

,

β0 = (n− 1) m

(
dUB

dz

)n−2

−Bn

(
dUB

dz

)−2

,

and where

π =

√√√√1
2

2∑

α,β=1

[
∂ (Uα + uα)

∂xβ

+
∂ (Uβ + uβ)

∂xα

] [
∂ (Uα + uα)

∂xβ

+
∂ (Uβ + uβ)

∂xα

]
− dUB

dz

=
∂u

∂z
+

∂w

∂x
=

(
D2 + α2

)
φB, Uα = UBδα1, (18)

is the perturbation to the second invariant of the rate-of-strain tensor. Similarly, in the
Newtonian top layer, the viscous component of the stress tensor is expressed as

Txx,T = −p +
2

Re0

∂u

∂x
, Tzz,T = −p +

2

Re0

∂w

∂z
, Txz,T =

1

Re0

(
∂u

∂z
+

∂w

∂x

)
,

but here the turbulent component of the stress tensor is non-trivial and has the form

TRey,j = −rj〈u′j ⊗ u′j〉 − T
(0)
Rey,j,

where u′ is the pre-averaged, fully turbulent, fluctuational velocity field, and T
(0)
Rey,j is the

Reynolds stress in the flat-interface state, modelled in Sec. II. For simplicity, we ignore
contributions from this component of the tensor. This is legitimate, since the effects of
the turbulence come almost entirely from the base state, especially for viscosity-contrast
instabilities; see [8]. Next, we re-express these equations in terms of the streamfunction

(uj, wj) = (∂Φj/∂z,−∂Φj/∂x) ,

and use the Fourier decomposition Φj = φj (z) eiα(x−ct). By rewriting the wave speed in
terms of its real and imaginary parts, c = cr +ici, the exponential component of the solution
can be re-expressed as eαciteiα(x−crt). Thus, positivity of ci indicates a growing instability;



13

the real part of the constant λ = −iα (cr + ici) is the growth rate, and this depends on the
problem parameters, that is,

λ = λ (α, r,m, δ, Re0, G, Γ) .

Here G and Γ represent a Bond number and an inverse capillary number respectively, defined
below in (22) and (23). Using the streamfunction representation of the velocity field, the
RANS equations (17) reduce to a pair of coupled Orr–Sommerfeld-type equations,

iαrRe0

{
[UB (z)− c]

(
D2 − α2

)
φB − φB

d2UB

dz2

}
=

(
D2 − α2

)2
φB

+ a0 (z) φB + a1 (z) DφB + a2 (z) D2φB + a3 (z) D3φB + a4 (z) D4φB − δ ≤ z < 0,
(19a)

iαRe0

{
[UT (z)− c]

(
D2 − α2

)
φT − φT

d2UT

dz2

}
=

(
D2 − α2

)2
φT , 0 ≤ z ≤ 1, (19b)

where we have taken D to mean d/dz, and where

a0 (z) = α2 d2µ0

dz2
+ α2

[
β0

(
d3UB

dz3
+ α2 dUB

dz

)
+ 2

dβ0

dz

d2UB

dz2
+

d2β0

dz2

dUB

dz

]
,

a1 (z) = −2α2 dµ0

dz
+ α2

(
2β0

d2UB

dz2
+ 2

dβ0

dz

dUB

dz

)
,

a2 (z) =
d2µ0

dz2
+ β0

(
d3UB

dz3
+ α2 dUB

dz

)
+ 2

dβ0

dz

d2UB

dz2
+

d2β0

dz2

dUB

dz
+ α2β0

dUB

dz
,

a3 (z) = 2
dµ0

dz
+ 2β0

d2UB

dz2
+ 2

dβ0

dz

dUB

dz
,

a4 (z) = β0
dUB

dz
.

Since the base state has two distinct domains (top and bottom layers), it is appropriate to
solve the Orr–Sommerfeld equation in each domain, and to apply matching conditions at
the domain boundary. This boundary or interface is at z = 0 + [perturbations]; here the
perturbation velocities must be continuous, while the jump conditions on the stress tensor
are standard. Linearizing these conditions on to the flat interfaces z = 0, we obtain the
following conditions:

φT = φB, (20a)

DφT = DφB +
φB

c− UB

(
dUB

dz
− dUT,

dz

)
, (20b)

(
D2 + α2

)
φT =

(
µ0 + β0

dUB

dz

) (
D2 + α2

)
φB, (20c)

iαRe0r

[
(c− UB) DφB +

dUB

dz
φT

]
+µ0

(
D3φB − 3α2DφB

)
+b0 (z) φB+b2 (z) D2φB+b3 (z) D3φB

= iαRe0

[
(c− UT ) DφT +

dUT

dz
φT

]
+

(
D3φT − 3α2DφT

)
+ iα

(
Γα2 + G

) φB

c− UB

, (20d)
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where

b0 (z) = α2

[
dµ0

dz
+ β0

d2UB

dz2
+

dβ0

dz

dUB

dz

]
,

b1 (z) = α2β0
dUB

dz
,

b2 (z) =
dµ0

dz
+ β0

d2UB

dz2
+

dβ0

dz

dUB

dz
,

b3 (z) = β0
dUB

dz
.

These interfacial conditions are non-standard and are derived in Appendix B. Finally, to
close the system of equations and to form an eigenvalue problem, we impose the no-slip
conditions at the boundaries,

φB (−δ) = φ′B (−δ) = 0, (21a)

φT (1) = φ′T (1) = 0. (21b)

Note that gravity and surface tension have been introduced to the problem through the
interfacial condition (20d): here G is the inverse Froude number

G =
gh2

ρGU0µT

(ρB − ρT ) , (22)

and Γ is the inverse Weber number,

Γ =
σ

U0µT

, (23)

where we have made use of the gravitational and surface tension constants g and σ. Note
that these parameters contain explicit Reynolds-number dependence, through the turbulent
velocity U0: this is discussed further at the start of Sec. IV. Having now outlined the model
problem, we discuss a numerical method for its solution.

B. Numerical method and validation

Following standard practice, we build the boundary and interfacial conditions into the
definition of our eigenvalue problem (19)–(21), which can then be written in operator form
as

Lφ = λMφ, λ = −iαc. (24)

Next, we write a trial solution φB =
∑nB

j=0 ajTj (z) and φT =
∑nT

j=0 bjTj (z), where Tj (z)

is the jth Chebyshev polynomial. We substitute these trial solutions into the eigenvalue
problem (24) and evaluate the resulting equation at nB + nT + 2 interior, boundary and
interfacial points. The resulting equation set is readily solved for λ. Choosing optimal
values of nB and nT guarantees convergence of the numerical scheme (typical values are
nB = 40, nT = 80, for δ-values between 0.05 and 0.5). We verify our numerical techniques
with reference to the work of Sahu et al. [10] for laminar upper layers in Fig. 6. To compare
with the existing results, we have taken Re0 = 24.40, Bn = 0.1679, m = 10, r = 1.1,
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FIG. 6: Validation of numerical method: comparison with the work of Sahu et al. for laminar
flow, with Re0 = 24.40, Bn = 0.1679, m = 10, r = 1.1, δ = 1, G = (1000/Re0) (1 + δ)−3, and
S = (100/Re0) (1 + δ)−1.

δ = 1, G = (1000/Re0) (1 + δ)−3, and S = (100/Re0) (1 + δ)−1, which enables a comparison
with Fig. 4 of Sahu et al.. The existing method for laminar flow and the present method,
when applied to laminar flow, give perfect agreement. However, the work of Sahu et al.
omitted the contribution β0U

′
B (0) to the effective liquid viscosity at z = 0 (but see the

corrigendum [28]). Including this contribution reduces the growth rate in this instance,
since β0 (0) = −Bn [U ′

B (0)]−2 < 0 for n = 1, thereby reducing the viscosity contrast at the
interface. This result highlights the important role that viscosity plays in the interfacial
instability. Since the effective viscosity at the interface is a function of the Bingham number
and the flow index, we proceed to a careful characterization of this dependence for the case
of turbulent flow in the Newtonian layer.

IV. LINEAR-STABILITY ANALYSIS: RESULTS

Based on the method developed in Sec. III, we carry out a linear-stability analysis of the
flat-interface state. In particular, we examine the effects of varying the Bingham number
and the flow index, effects which are absent from the purely Newtonian case, which has
been considered elsewhere [8]. To carry out the stability analysis, we must first of all find
a reasonable estimate for the gravity- and surface-tension numbers, obtained in Eqs. (22)
and (23) respectively. We estimate the gravity number by re-arranging it as

G =
gh

(µT / (ρT h))2

r − 1

Re2
0

. (25)

Based on µT = 10−3 Pa s, ρG = 103 kg m−3, and h = 0.05 m, the prefactor is 1.225 × 109.
The value of the interfacial tension coefficient Γ between the non-Newtonian soil layer and
the upper fluid layer will vary depending on the substances under consideration. Precise
values are indeed known for various combinations (see, for example, the work of Kristensen
et al. for dairy products [29]). Here we set it to 10, which ensures that gravity dominates
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FIG. 7: Comparisons between the growth rates for the turbulent and laminar models, Bn = 0.25,
r = 2, m = 10, and δ = 0.2. (a) Turbulent and laminar flow for the same value of the Reynolds
number, Re0 = 1000; (b) Turbulent and laminar flow at the same flow rate,

∫ 1
−δ U (z) dz = 14.13,

and Re0 = 1000 for the turbulent case.

over surface tension except at very small wavelengths `/h ≤ 2π
√

Γ/G. This involves no loss
of generality, and we have verified (but do not show here) the qualitative similarity between
the results obtained in the present case by varying this parameter, and the results obtained
elsewhere, where the effects of varying the surface tension are studied for Newtonian [6, 8]
and non-Newtonian [10] layers sheared by turbulent and laminar flow respectively.

The first aspect of our stability analysis is a comparison with the results for laminar
flow. We compare the growth rate for the turbulent profile derived in Sec. II with that of a
Poiseuille profile. Such a comparison necessitates the maintenance of the unstable two-phase
laminar profile at high Reynolds numbers, which may not be possible. The results of the first
of these comparisons is shown in 7 (a), where the Reynolds number Re0 is kept fixed. The
maximum growth rate is larger in the turbulent case. Note, however, the existence of two
competing modes in the laminar case, which vanish in the turbulent case. These marked
differences between the two models underscore the importance of studying the turbulent
case. The second comparative result is shown in 7 (b), where the flow rate is held fixed.
Again, the turbulent case is more unstable, and the difference is even more pronounced than
in case (a).

Next, the results of the stability analysis for various Bn-values is shown in Fig. 8, where
n = 1, Re0 = 1000, r = 2, m = 10, and G and Γ are defined above (see Eq. (25)). This
parameter choice corresponds to the flow of a turbulent Newtonian layer over a denser, more
viscous, laminar Bingham fluid. In each case considered, the flow is unstable to a band of
wavenumbers in the range 0 < α < αc, where αc is the ‘cutoff’ wavenumber beyond which
gravity and surface tension stabilize the flow. In Fig. 8 (b) the aspect ratio δ is set to 0.2.
Increasing the Bingham number is seen to destabilize the flow: the cutoff wavenumber is
shifted outwards, and the maximum growth rate is shifted upwards. This trend persists
upon increasing the aspect ratio (δ = 0.5 in Fig. 8 (c)). Increasing the aspect ratio further
is beyond the capability of the model, since such an increase would lead to a large liquid
Reynolds number (ReB = 1275 for δ = 1), which would call into question the assumption
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FIG. 8: The effect of varying the Bingham number, Bn, on the linear stability of the base flow:
(a) δ = 0.05, (b), δ = 0.2, and (c), δ = 0.5. Here, n = 1, Re0 = 1000, r = 2, m = 10, and G and Γ
are defined according to the discussion in the introduction to this section. Increasing the Bingham
number (at fixed pressure gradient Re0 = 1000) is seen to be destabilizing: the cutoff wavenumber
is shifted to higher values, and the maximum growth rate is increased. This effect becomes more
prominent at larger δ-values.
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FIG. 9: The effect of varying the flow index, n, on the linear stability of the base flow: (a)
δ = 0.05, (b), δ = 0.2, and (c), δ = 0.5. Here, Bn = 0, Re0 = 1000, r = 2, m = 10, and G and
Γ are defined according to the discussion in the introduction to this section. Increasing the flow
index is stabilizing, since the maximum growth rate is shifted downwards. The dependence of the
cutoff wavenumber on the flow index is non-monotonic: both an increase, and a decrease in n can
increase the cutoff wavenumber, as evidenced in particular by the δ = 0.05 curves.

that this layer is laminar. Next, we study the effects of varying the flow index in Fig. 9, at
fixed Bn = 0. Increasing the flow index gives rise to a reduction in the maximum growth
rate, for δ = 0.05, 0.2, and δ = 0.5. In contrast to the case where the Bingham number was
varied at fixed n = 1, here the variation in the non-Newtonian parameter produces a change
in the shape of the dispersion curve, rather than a simple overall upward or downward shift
in the curve. Thus, increasing n beyond n = 1 decreases the maximum growth rate, but
shifts the cutoff wavenumber to higher values, which produces instability for a wider band
of disturbances. This dependence of the cutoff wavenumber on the flow index is highly
non-monotonic however, as evidenced by a close inspection of Fig. 9 (a)–(c), and by Fig. 10,
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FIG. 10: Dependence of the cutoff wavenumber on the flow index n for δ = 0.05. Here Bn = 0,
Re0 = 1000, r = 2, m = 10, and G and Γ are defined according to the discussion in the introduction
to this section. The dependence of the cutoff on the flow index is highly non-monotonic, with a
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FIG. 11: The effect of varying the Reynolds number, Re0, on the linear stability of the base flow,
where, Bn = 0.25, r = 2, m = 10, and δ = 0.2.

where the cutoff wavenumber as a function of n is shown, for δ = 0.05. We also examine
the effects of varying the Reynolds number in Fig. 11, where an increase in the Reynolds
number is shown to be destabilizing, through an increase in both the maximum growth rate,
and the cutoff wavenumber. Finally, we turn to a calculation that demonstrates the effects
of varying m, r, and δ on the stability characteristics of the system.

The effect of varying the parameters m, r and δ on the stability properties of a two-layer
system has been discussed in the literature for Newtonian fluids [8], and we expect the
results to be qualitatively similar for the case considered here (non-Newtonian films sheared
by turbulent upper layers). However, to develop a quantitative description, we provide a
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comparison between the Newtonian and the Bingham cases in Fig. 12; this figure also serves
to demonstrate the destabilizing effects of the non-Newtonian rheology. Thus, in each case
considered, the presence of the yield stress is destabilizing, in the sense that the maximum
growth rate is increased relative to the Newtonian case. For all but a narrow range of δ-values
(see Fig. 12 (d)), the presence of the yield stress also increases the cutoff wavenumber. Having
identified enhanced instability as the salient feature of the non-Newtonian rheology, we turn
to energy-budget analysis as a means of determining the mechanism for this enhancement.

The linearized dynamical equations associated with the Orr–Sommerfeld equations pos-
sess an energy

1
2

∫ 0

−δ

dz

∫ 2π/α

0

dx |uB|2
︸ ︷︷ ︸

=EB

+ 1
2

∫ 1

0

dz

∫ 2π/α

0

dx |uT |2
︸ ︷︷ ︸

=ET

,

where rB = r and rT = 1, which grows or decays in time according to the stability of the
base state. By matching the time change in the kinetic energy KINj = dEj/dt with the
inputs of power into the perturbations, an energy budget is obtained [5]:

KINB + KINT = DISSB + DISST + REYB + REYT + NOR + TAN,

where DISS denotes energy loss through viscous dissipation, REY denotes transfers of energy
from the mean flow into the perturbations in the bulk parts of the two phases, while NOR
and TAN denote energy delivered by the normal and tangential stresses at the interface. Of
particular interest in the present applications are the terms

REYT =

∫ h

0

dz τT,wrs (z)
dUT

dz
, τT,wrs (z) =

∫ 2π/α

0

dxuw, (26)

and

TAN =

[
dUB

dz

(
m

(
dUB

dz

)n−1

−Bn

(
dUB

dz

)−1

− 1

)]

z=0

∫ 2π/α

0

dx η (x) TB,xz (x, z = 0) ,

where TB,xz is the off-diagonal stress term in the bottom layer. These relationships are
derived rigorously in Appendix C. Using this decomposition, we characterize the instability
in Figs. 8 and 9, and show the results for various Bingham numbers and flow indices in
Tabs. I and II respectively. The character of the instability does not change upon changing
the rheological parameters or the aspect ratio δ. In each case considered, the instability is
due to the TAN and REYT terms, the latter being the dominant term. The TAN term is
positive when the viscosity in the lower liquid exceeds that of the upper liquid, which gives
rise to a positive amount of work done by the tangential stress on the interface. Thus, we can
unambiguously say that the TAN term arises from a viscosity mismatch across the interface.
On the other hand, there are several mechanisms that work to produce a positive REYT

term. To pinpoint which one is at work, we examine the wave Reynolds stress function
defined by Eq. (26), for various Bn- and n-values, shown in Fig. 13. No energy transfer
from the critical layer (the zone where U (z) = cr) is evident from the wave Reynolds stress
plots: indeed, the wave speed cr lies inside the liquid in (c) and (d). Thus, the positive
contribution to the energy budget from REYT is related to the viscosity mismatch across
the interface. Further vindication of this claim can be found by examination of Fig. 3 in [5].
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FIG. 12: Comparison between the maximum growth rate for a non-Newtonian fluid (Bn = 0.3,
n = 1), and Newtonian fluid, where Re0=1000. (a) and (b) show the effect of varying the density
ratio, at δ = 0.2 and m = 10. Both the maximum growth rate and the cutoff are shifted to higher
values for the non-Newtonian fluid. (c) and (d) show the effect of varying the aspect ratio, for
r = 2 and m = 10; lastly, (e) and (f) show the effect of varying the viscosity contrast m for r = 2
and δ = 0.2.
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FIG. 13: Streamfunction and wave Reynolds stress plots respectively. (a) and (b) show results for
n = 1, Bn = 0.25, and δ = 0.5; (c) and (d) show results for n = 0.8, Bn = 0, and δ = 0.05. In the
first case, cr − U(0) = 1.8, a small value which gives rise to a critical layer in the linear region of
the flow profile UT (z); in the second case, cr−U(0) = −8.76, which gives rise to a critical layer in
the liquid. These results rule out the possibility that the critical layer mechanism plays any role
in the formation of the instability.

V. ADDITIONAL MODES OF INSTABILITY

As in the laminar case, a second mode of instability exists for high Reynolds numbers.
There, however, ends the similarity with laminar flows. In the situation we consider here,
this ‘internal’ mode is due to stresses in the bottom layer, rather than the top layer. Thus,
increasing the Bingham number is stabilizing, since it leads to a higher effective viscosity
in the liquid. Similarly, increasing the flow index is stabilizing. Indeed, for shear-thinning
modes, two internal modes become positive, although even in this case, the possibility of
mode competition is ruled out, since the interfacial mode dominates. In this section we give
these ideas some clarity by examining the growth rates, energy budgets, and streamfunctions
of this second mode.
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Bn αmax KINT KINB REYB REYT DISSB DISST NOR TAN
0 36 0.37 0.63 0.00 1.04 -0.23 -0.28 -0.02 0.49

0.1 34 0.36 0.64 0.00 1.03 -0.20 -0.25 -0.01 0.44
0.3 36 0.37 0.63 0.00 1.03 -0.20 -0.25 -0.01 0.44

Bn αmax KINT KINB REYB REYT DISSB DISST NOR TAN
0 29 0.34 0.66 -0.01 1.02 -0.17 -0.25 -0.02 0.43

0.1 28 0.35 0.65 -0.01 1.01 -0.14 -0.21 -0.01 0.36
0.3 31 0.50 0.50 0.00 1.04 -0.24 -0.21 -0.01 0.43

Bn αmax KINT KINB REYB REYT DISSB DISST NOR TAN
0 17 0.34 0.66 -0.01 1.00 -0.11 -0.16 -0.02 0.30

0.1 20 0.36 0.64 -0.01 1.01 -0.13 -0.18 -0.01 0.33
0.3 23 0.36 0.64 0.00 1.02 -0.14 -0.20 -0.01 0.33

TABLE I: Energy budget as a function of Bingham number Bn for the most dangerous mode with
δ = 0.05, δ = 0.2, and δ = 0.5.

n αmax KINT KINB REYB REYT DISSB DISST NOR TAN
0.8 38 0.40 0.60 0.00 1.00 -0.12 -0.22 -0.02 0.37
1.0 36 0.37 0.93 0.00 1.04 -0.23 -0.28 -0.02 0.49
1.4 29 0.21 0.79 -0.01 1.30 -0.89 -0.93 -0.02 1.55

n αmax KINT KINB REYB REYT DISSB DISST NOR TAN
0.8 31 0.38 0.62 0.00 0.99 -0.10 -0.19 -0.02 0.32
1.0 29 0.34 0.66 -0.01 1.02 -0.17 -0.25 -0.02 0.43
1.4 19 0.23 0.77 -0.04 1.10 -0.28 -0.29 -0.01 0.52

n αmax KINT KINB REYB REYT DISSB DISST NOR TAN
0.8 21 0.38 0.62 -0.01 0.99 -0.09 -0.17 -0.02 0.29
1.0 17 0.34 0.66 -0.01 1.00 -0.11 -0.16 -0.01 0.30
1.4 12 0.26 0.74 -0.05 1.08 -0.25 -0.19 -0.01 0.41

TABLE II: Energy budget as a function of flow index n for the most dangerous mode with δ = 0.05,
δ = 0.2, and δ = 0.5.

A dispersion curve demonstrating the development of a second unstable mode is shown
in Fig. 14. This mode appears at large Reynolds numbers, as evidenced by the consideration
of the Re0 = 5000, n = 1, Bn = 0 case. The growth rate of this mode is reduced by the
addition of the yield stress, since this addition effectively increases the viscosity in the liquid
layer: a similar result holds for the shear-thickening fluid. On the other hand, the growth
rate is increased for the shear-thinning fluid. In fact, two unstable modes appear in this case
(n = 0.8), as evidenced in Fig. 15. The energy source of these modes is threefold, coming
from the interface, and the bulk flow in both layers: see Tab. III. Nevertheless, we call these
modes “internal”, since their critical layer lies deep inside the bottom layer: cr < U (0) in all
cases considered; for further evidence of this fact, see the bottom-layer maxima in the wave
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n Bn Type αmax KINT KINB REYB REYT DISSB DISST NOR TAN
1 0 Internal (1) 2.3 0.57 0.43 2.94 0.16 -1.72 - 6.03 0.00 5.65

1.4 0 Internal (1) 0.8 0.00 1.00 0.03 2.79 -0.19 - 1.64 0.00 0.00
0.8 0 Internal (1) 1.7 0.50 0.50 2.03 -0.47 -0.12 -10.60 0.02 11.16

n Bn Type αmax KINT KINB REYB REYT DISSB DISST NOR TAN
0.8 0 Internal (2) 6.1 0.11 0.89 0.03 0.54 -0.27 -2.63 0.00 3.33

TABLE III: Energy budget for the most dangerous mode, Re0 = 5000, δ = 0.2, m = 10, and
r = 2, as a function of flow index n. The parametric dependence on the Bingham number is not
considered here because the addition of the yield stress stabilizes this mode.
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FIG. 14: The existence of a second mode for Re0 = 5000, δ = 0.2, m = 10, and r = 2, as a function
of Bingham number and flow index. Increasing the Bingham number stabilizes the mode, as does
an increase in the flow index. Reducing the flow index below unity destabilizes the mode.

Reynolds stress functions in Fig. 16. Note finally that in both Figs. 14 and 15 these internal
modes have a growth rate that is smaller than that of the interfacial mode by an order of
magnitude. Nevertheless, these modes are observable in principle, since their dimensional
growth rates can be large [6, 10].

VI. BARELY-YIELDED FLUIDS

In this section we address the effects of the perturbations on a barely-yielded fluid, for
which the derivative of the base-state profile in the non-Newtonian fluid approaches zero at
the interface. As in Sec. II C, we make use of the regularized Herschel–Bulkley model for
convenience, although this does not enter into the linear-stability calculations, since these
are carried out above the yield threshold. Rather, the regularized model is used to provide a
threshold such that the instability can preciptate the formation of yielded regions near the
interface. Again, for simplicity, we focus on Bingham fluids with index n = 1.

First, for a given parameter set below the yield threshold, we investigate the dispersion
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FIG. 15: Two internal modes occur for flow index n = 0.8 and Bn = 0. Here, Re0 = 5000, δ = 0.2,
m = 10, and r = 2. The internal modes are an order of magnitude smaller than the interfacial
mode: here (a) is an inset of (b).
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FIG. 16: Streamfunctions (a) and wave Reynolds stress functions (b) for the internal modes (1) and
(2) found in the n = 0.8 case. These flow functions are computed for the most dangerous mode. is
The wave Reynolds stress function has large positive contributions in both modes, indicating that
the source of the instability is in the bottom, non-Newtonian layer. Here Bn = 0, Re0 = 5000,
δ = 0.2, m = 10, and r = 2.

curve as a function of the Bingham number. This parameter set is Re0 = 1000, m = 10
r = 2, δ = 0.1, and Γ and G fixed according to the discussion after Eq. (25). This is done
in Fig. 17. As the Bingham number is increased gradually, the maximum growth rate also
increases, consistent with the findings in Sec. IV. However, as the critical Bingham number
Bnc = Re2

∗/Re2
0 is approached, this trend is reversed and the maximum growth rate along

this (interfacial) modal branch decreases (Figs. 17 (a) and (b)). At the same time, a second
unstable mode comes into existence, and plays the role of the most dangerous mode (c).
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FIG. 17: Dispersion curves near the critical Bingham number. (a) The growth rate as function of
wave number, with Re0 = 1000, m = 10, and r = 2; (b) the maximum growth rate as a function
of Bingham number along the interfacial branch; (c) The maximum growth rate along both the
internal and interfacial branches, near the critical Bingham number. Mode competition occurs and
the internal mode becomes the most dangerous one.

That this new mode is internal in nature is confirmed by an energy-budget calculation (not
shown), and by the fact the associated wave speed is negative. In Fig. 17 (c), the internal
mode fails to be stabilized by surface tension at short wavelengths. This result is surpris-
ing, and we have ruled out the possibility that it is a numerical artefact arising from the
small values of (dUB/dz)z=0 that appear in the problem: by increasing the surface-tension
coefficient Γ, while keeping (dUB/dz)z=0 small, this effect vanishes, suggesting that the it
is genuine. Moreover, this result indicates the possibility of ill-posedness in the problem.
This possibility is discounted however, by examination of the subsequent phase of the wave
evolution, whereby these unstable, near-critical waves precipitate the formation of unyielded
regions, which then stabilize these fast-growing waves. It is to this question that we now
turn.

Within the framework of the regularized model discussed in Sec. II C, we focus on one
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FIG. 18: Summary of initial conditions used to evolve the linear wave in time, and to precipitate
the formation of unyielded regions from a fully-yielded base state.

particular border between well-yielded and quasi-yielded flows, for which the cutoff rate of
strain Πc is small but finite, and for which the difference between Πc and the base-state
rate of strain (dUB/dz)z=0 is O (ε); this relationship is shown schematically in Fig. 18. The
initial rate of strain Π (t = 0, x, z = 0) differs from the base-state rate of strain (dUB/dz)z=0

by an amount that is O (ε), and is chosen such that

max
x∈[0,2π/α]

∣∣∣∣Π (t = 0, x)− dUB

dz

∣∣∣∣
z=0

<

∣∣∣∣πc − dUB

dz

∣∣∣∣
z=0

.

Thus, the initial state is well-yielded. This particular boundary between well- and quasi-
yielded flows is straightforward to deal with in a linear-stability analysis, since the total rate
of strain

Π =

√(
E

(0)
ij + δEij

)
(E(0),ij + δEij),

=
dUB

dz
+ δwx + δuz

can be linearized in the usual manner, without the necessity for a two-parameter expansion
in (dUB/dz)z=0 and the wave amplitude ε. With these initial conditions, the location of the
yield surface in the base state is at z = −h0 = − [mπ0 + Bn− (Re2

∗/Re2
0)] > 0 (Eq. (16)),

that is, no yield surface exists. The perturbation shifts the location of the yield surface from
this equilibrium value to a new value

h0 + δh0 = mπ0 + Bn− Re2
∗

Re2
0

− ε
m

2Re0

< [
eiαx

(
D2 + α2

)
φB

]
z=0

, (27)

where ε is the amplitude of the initial interfacial wave. (That the shift should be related
to < [eiαx (D2 + α2) φB]z=0 is obvious; the prefactor m/ (2Re0) is computed in Appendix C.)
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(a) (b)

(c) (d)

FIG. 19: Time-evolution of the viscosity field µ (x, z, t) /µcutoff for (a) t = 0; (b) t = 0.012; (c)
t = 0.024; (d) t = 0.036. The interface is given an exaggerated elevation to demonstrate its phase
relationship with the viscosity, and the parameter values are α = 33, δ = 0.1, Re0 = 1000, n = 1,
m = 10, r = 2; the rest of the values are given in Eq. (28).

Such a wave can therefore cause a localized downward shift in the location of the yield
surface, if it exists, or, by the same reasoning, the creation of a yield surface in zones for
which h0 + δh0 < 0. This is expected at x-values for which < [eiαx (D2 + α2) φB]z=0 < 0.
We apply some numerical values to the schematically-depicted initial conditions in Fig. 18.
Specifically,

α = 33,

πc = 10−4,

Bn = 0.9999× 0.48995498,

ε = 10−3

∣∣∣∣
πc − (dUB/dz)z=0

maxx∈[0,2π/α] [< (eiαx (D2 + α2) φB)z=0]

∣∣∣∣ . (28)

Fig. 19 shows four snapshots in time of the viscosity field in the non-Newtonian layer, with
an artificially large interfacial wave shown for illustrative purposes. The viscosity is seen to
grow in magnitude in the trough of the wave.

We also plot the phase relationship between the stress function τ (x) =
(m/Re0)< [eiαx (D2 + α2) φB](t=0,z=0) and the interfacial elevation in Fig. 20. The maxima
and minima of these functions are almost in phase: peaks and troughs of η and τ almost
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FIG. 20: Phase relationship between the interfacial wave and the stress function τ (x) =
(m/Re0)<

[
eiαx

(
D2 + α2

)
φB

]
(t=0,z=0)

, for α = 33. Here δ = 0.1, Re0 = 1000, n = 1, m = 10,
r = 2; the other parameter values are given in Eq. (28).

coincide. Thus, as the limiting viscosity is attained (as in Fig. 19), a yield surface must
be introduced into the problem, at a location given by Eq. (27). According to Eq. (27)
and Fig. 20 the yield surface and the interface will enclose a small unyielded region centred
around the trough of the free-surface wave. Now the analysis of the system beyond the
time where this yield surface suddenly forms is not possible, and full numerical simulations
are required. Nevertheless, our linearized study has produced one quantitative prediction,
namely the formation of unyielded regions of fluid in the troughs of the interfacial wave.

An equivalent, and more concrete way of demonstrating this result is to compute the value
of the wave amplitude εeλrt |cos [α (x− crt)]| for which the rate of strain attains the cutoff
value. This value of the wave amplitude we call A, and is a function of Bingham number.
If the A-value can be made to be O (ε), then the linearized dynamics will precipitate the
formation of unyielded regions. A plot of the A-value as a function of Bingham number will
thus demonstrate if this is possible. The A-value can be calculated by equating the total
rate of strain

Π = Π(0) + δwx + δuz = Π(0) + εeλrt cos [α (x− crt) + θ]
(
D2 + α2

)
Ψ (z) ,

with the cutoff value:

εeλrt cos [α (x− crt) + θ] =
πc − (dUB/dz)z=0

[(D2 + α2) Ψ]z=0

≡ A.

We carry out a numerical computation of A (Bn) for the following parameter set:

πc = 10−4,

Bnc = 0.48995498, (dUB/dz)z=0,Bn=Bnc
= πc,

α = 33,

The result is shown in Fig. 21. Varying the cutoff rate of strain πc between 10−3–10−5 has
a negligible effect on this curve, and this parameter change is not displayed. As the critical
Bingham number is approached, A tends to zero. Thus, for sufficiently large Bingham
numbers, A is O (ε), the critical rate of strain is attained, and unyielded regions form.
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FIG. 21: The critical wave amplitude A for the formation of unyielded regions, as a function of
Bingham number, at α = 33. As the critical Bingham number is approached, the critical wave
amplitude tends to zero, indicating that small-amplitude waves can precipitate the formation of
unyielded regions, provided the Bingham number is sufficiently close to criticality.

VII. CONCLUSIONS

We have formulated a linear theory that describes waves that develop at the interface
between a bottom layer of non-Newtonian fluid and a top layer that is Newtonian in na-
ture, but is fully developed and turbulent. This model has two components. The first is
a base state describing the flat-interface state, which takes account of the non-Newtonian
rheology in the bottom layer, and provides the velocity profile and a means of evaluating
the interfacial shear stress as a function of the pressure gradient and other fluid parameters.
The other component is a linear-stability analysis based on the Orr–Sommerfeld formalism
that predicts when the base state is linearly stable. The results of this analysis are sum-
marised in dispersion curves, where the growth rate is given as a function of the disturbance
wavenumber. This enables a parametric study, where we found that increasing the Bingham
number in the bottom layer is destabilizing, but increasing the flow index is stabilizing if
the imposed driving pressure gradient (or else the flow rate) is kept constant. Increasing
the Bingham number also brings a broader spectrum of modes into play, since the cutoff
wavenumber is shifted to higher values; the dependence of the cutoff on the flow index n is
non-monotonic however, with a minimum that strongly depends on the film thickness.

This first parameter study is carried out for moderate values of Bingham number, in the
sense that the Bingham number is not sufficiently large to introduce unyielded regions into
the base state. In fact, there is a critical Bingham number below which such unyielded
regions do not form. Nevertheless, the near-critical region of parameter space is of interest,
and thus in Sec. VI we address the notion of barely yielded flows, that is, flows for which the
base state is unyielded but near criticality. For these flows, we have demonstrated that for
Bingham numbers sufficiently close to criticality, linear waves can precipitate the formation
of unyielded regions, and that these regions form in the troughs of the waves adjacent to
the interface. This implies that current numerical methods for direct numerical simulations
must resolve the jump in effective viscosity across the interface in a sharp manner, such
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the application of the ghost-fluid methods [30] to two-phase incompressible flow (e.g., the
work of Desjardins et al. [31]). Otherwise, the shape of high-viscosity regions adjacent to
the interface would be much distorted by any smoothing.
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APPENDIX A

In this section, we derive the interfacial conditions involving the perturbed stress tensor

Txx,B = −p +
2µ0

Re0

∂u

∂x
, Tzz,B = −p +

2µ0

Re0

∂w

∂z
,

Txz,B =
1

Re0

(
µ0 + β0

dUB

dz

)(
∂u

∂z
+

∂w

∂x

)
,

Txx,T = −p +
2

Re0

∂u

∂x
, Tzz,T = −p +

2

Re0

∂w

∂z
, Txz,T =

1

Re0

(
∂u

∂z
+

∂w

∂x

)
.

We shall find the following notation for the viscosity helpful:

MB =
µ0

Re0

, MT =
1

Re0

.

At the interface z = η (x, t), the components of this tensor that make physical sense are the
shear and normal stresses, respectively

Shear stress = ŝαn̂βTαβ, Normal stress = n̂αn̂βTαβ,

where we use the summation convention and sum over repeated indices. The vector ŝ is a
unit vector parallel to the perturbed interface, while n̂ is a unit vector perpendicular to ŝ.

The shear-stress condition: The shear stress on either side of the interface is the same,
that is,

ŝαn̂β

(
TT

αβ − TB
αβ

)
= 0, sum over α, β.

Now to lowest order, we have

n̂ = (−ηx, 1) + O
(
η2

)
, ŝ = (1, ηx) + O

(
η2

)
,
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with
n̂ · ŝ = 0.

Now

ŝαn̂βTαβ = −ηxTxx + ηxTzz + Txz + η2
xTxz,

≈ ηx

(
T(0)

zz − T(0)
xx

)
+ T(0)

xz + T(1)
xz + H.O.T.,

Since T
(0)
zz = T

(0)
xx = −P0, this condition reduces to

[[
T(0)

xz (0) +
dT

(0)
xz

dz
(0) η + T(1)

xz (0) + H.O.T.

]]
= 0,

where [[·]] is the jump. Since the stresses are matched at zeroth order, it suffices to consider
the jump condition [[

dT
(0)
xz

dz
(0) η + T(1)

xz (0)

]]
= 0,

which reduces to

(
D2 + α2

)
φT = µ0

(
D2 + α2

)
φB + η

(
µ0

d2UB

dz2
+

dµ0

dz

dUB

dz
− d2UT

dz2

)
+ β0

dUB

dz
πB,

where η = φB (0) / (c− UB) is the interface height,

d

dz

(
µ0

dUB

dz

)
− d2UT

dz2
= 0,

and

πB =
∂u

∂z
+

∂w

∂x
=

(
D2 + α2

)
φB.

Hence, we obtain the third interfacial condition,

(
D2 + α2

)
φT =

(
µ0 + β0

dUB

dz

) (
D2 + α2

)
φB. (A-1)

The normal-stress condition: The difference between the normal stress across the interface
is related to the surface tension through the formula

n̂αn̂β

(
TT

αβ − TB
αβ

)
= −Γ0K, sum over α and β.

where K is the curvature of the interface, and in the linear approximation is simply

K = ηxx.

The constant Γ0 = σ/ (ρGHU2
0 ) is the non-dimensional surface tension corresponding to the

dimensional surface tension σ Thus, [[n̂αn̂βTαβ]] = −Γ0ηxx on z = η. Hence,

[[2n̂xn̂zTxz + n̂zn̂zTzz + n̂xn̂xTxx]] = −Γ0ηxx.
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But n̂xn̂x = η2
x, while n̂zn̂z = 1 and thus, to lowest order in η and its derivatives, the normal

stress is T
(0)
zz + T

(1)
zz + 2ηxµ (dU/dz), and the jump condition is

[[
−2ηxMdU

dz
+ T(0)

zz + T(1)
zz

]]T

B

= −Γ0ηxx,

where Γ0 = σ/ (ρT HU2
0 ) is the non-dimensinoal surface tension corresponding to the dimen-

sional surface tension σ, and ηxx is the linearized curvature. Since the stresses M (dU/dz)

and T
(0)
zz are matched at z = 0, it suffices to consider the condition

[[
η
dT

(0)
zz

dz
+ T(1)

zz

]]T

B

= −Γ0ηxx.

Now T
(0)
zz = −P , and [[r]]TB = (rT − rB). Hence, by hydrostatic balance, the normal-stress

condition is reduced to

[[
T(1)

zz

]]T

B
= −Γ0ηxx −G0 (rT − rB) η,

=
[
Γ0α

2 + (rB − rT ) G0

]
η,

where G0 = gH/U2
0 . Thus,

− (pT − pB)− 2iα

Re0

(DφT − µ0DφB) =
[
Γ0α

2 + (rB − rT ) G0

]
η.

In the upper layer,

pT =
1

iαRe0

D3φT +

[
(c− UT (z)) +

iα

Re0

]
DφT + φT

dUT

dz
,

while in the bottom layer,

pB =
µ0

iαRe0

D3φB +

[
r (c− UB (z)) +

iαµ0

Re0

]
DφB + rφ

dUB

dz

+
1

iαRe0

dµ0

dz

(
D2 + α2

)
φB +

β0

iαRe0

dUB

dz
DπB +

1

iαRe0

(
β0

d2UB

dz2
+

dβ0

dz

dUB

dz

)
πB.

Thus, the normal-stress condition is

r

[
(c− UB) DφB +

dUB

dz
φB

]
−

[
(c− UT ) DφT +

dUT

dz
φT

]

+
µ0

iαRe0

(
D3φB − 3α2DφB

)− 1

iαRe0

(
D3φT − 3α2DφT

)

+
1

iαRe0

dµ0

dz

(
D2 + α2

)
φB +

β0

iαRe0

dUB

dz
DπB +

1

iαRe0

(
β0

d2UB

dz2
+

dβ0

dz

dUB

dz

)
πB

=
[
Γ0α

2 + (rB − rT ) G0

]
η.
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This condition is tidied up by taking Γ = Γ0Re0, G = (rB − rT ) G0Re0. Additionally, we
use the free-surface condition η = φB (0) / (c− UB). Hence,

iαRe0r

[
(c− UB) DφB +

dUB

dz
φB

]
+ µ0

(
D3φB − 3α2DφB

)

+
dµ0

dz

(
D2 + α2

)
φB + β0

dUB

dz
DπB +

(
β0

d2UB

dz2
+

dβ0

dz

dUB

dz

)
πB

= iαRe0

[
(c− UT ) DφT +

dUT

dz
φT

]
+

(
D3φT − 3α2DφT

)
+ iα

(
Γα2 + G

) φB

c− UB

.

Lastly, identifying πB = (D2 + α2) φB, we have the normal-stress condition

iαRe0r

[
(c− UB) DφB +

dUB

dz
φB

]
+ µ0

(
D3φB − 3α2DφB

)

+ b0 (z) φB + b1 (z) DφB + b2 (z) D2φB + b3 (z) D3φB

= iαRe0

[
(c− UT ) DφT +

dUT

dz
φT

]
+

(
D3φT − 3α2DφT

)
+ iα

(
Γα2 + G

) φB

c− UB

,

where

b0 (z) = α2

[
dµ0

dz
+ β0

d2UB

dz2
+

dβ0

dz

dUB

dz

]
,

b1 (z) = α2β0
dUB

dz
,

b2 (z) =
dµ0

dz
+ β0

d2UB

dz2
+

dβ0

dz

dUB

dz
,

b3 (z) = β0
dUB

dz
.

APPENDIX B

To understand the mechanism by which the parametrized stress enhances the growth rate of
the wave, we perform an energy-budget analysis. To find the energy budget of the system,
we multiply the Reynolds-averaged Navier–Stokes (RANS) equation of the linear problem by
uj, where j = B, T , and integrate over a single wavelength (periodic cell) in the x-direction,
and over the entire z-domain.

The linearized RANS equations have the following form:

rj

(
∂uj

∂t
+ Uj · ∇uj + uj · ∇Uj

)
= ∇ · Tj, (B-1a)

∇ · uj = 0, (B-1b)
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where (rB, rT ) = (r = ρB/ρT , 1). The stress terms are given by the formulas

Txx,B = −p +
2µ0

Re0

∂u

∂x
, Tzz,B = −p +

2µ0

Re0

∂w

∂z
,

Txz,B =
1

Re0

(
µ0 + β0

dUB

dz

)(
∂u

∂z
+

∂w

∂x

)
,

Txx,T = −p +
2

Re0

∂u

∂x
, Tzz,T = −p +

2

Re0

∂w

∂z
, Txz,T =

1

Re0

(
∂u

∂z
+

∂w

∂x

)
.

In deriving the Orr–Sommerfeld equation, we find that the pressure terms have a represen-
tation in terms of the stream function φ (z),

pB =
µ0

iαRe0

D3φB +

[
r (c− UB (z)) +

iαµ0

Re0

]
DφB + rφB

dUB

dz

+
1

iαRe0

dµ0

dz

(
D2 + α2

)
φB +

β0

iαRe0

dUB

dz
DπB +

1

iαRe0

(
β0

d2UB

dz2
+

dβ0

dz

dUB

dz

)
πB,

πB =
∂uB

∂z
+

∂wB

∂x
, (B-2a)

pT =
1

iαRe0

D3φT +

[
(c− UT (z)) +

iα

Re0

]
DφT + φT

dUT

dz
, (B-2b)

We multiply (B-1a) by uj and integrate over the unit cell, [0, `]× [−dB, 0] for the liquid,
and [0, `] × [0, h] for the upper layer. Here ` = 2π/α is the wavelength of the disturbance
(working with a sinusoidal disturbance gives periodic boundary conditions in the lateral
direction). Using Gauss’ theorem on the stress term, we obtain the energy relation for the
liquid:

rB

∫
dx

∫
dz

[
1
2

∂u2
B

∂t
+ uBwB

ddUB

ddz

]
=

− 1

ReB

∫
dx

∫
dz

[
2µ0

(
∂uB

∂x

)2

+ 2µ0

(
∂wB

∂z

)2

+

(
µ0 + β0

dUB

dz

)(
∂uB

∂z
+

∂wB

∂x

)2
]

+

∫
dx [uBTB,zx + wBTB,zz]z=0 ,

Note that µ0 +β0 (dUB/dz) = mn (dUB/dz)n−1, so the dissipation term is still sign-definite.
Similarly, we have the energy relation for the upper layer:

rT

∫
dx

∫
dz

[
1
2

∂u2
T

∂t
+ uT wT

dUT

dz

]
=

− 1

ReB

∫
dx

∫
dz

[
2

(
∂uT

∂x

)2

+

(
∂uT

∂z
+

∂wT

∂x

)2

+ 2

(
∂wT

∂z

)2
]

−
∫

dx [uT TT,zx + wT TT,zz]z=0
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Adding the two equations together we obtain, in a standard fashion, the energy-budget
relation ∑

i=B,T

KINi =
∑

i=B,T

REYi +
∑

i=B,T

DISSi + INT,

where

KINi = 1
2

d

dt

∫
dx

∫
dz riu

2
i ,

REYi = −ri

∫
dx

∫
dz uiwi

dUi

dz
,

DISST = − 1

Re0

∫
dx

∫
dz

[
2

(
∂uT

∂x

)2

+

(
∂uT

∂z
+

∂wT

∂x

)2

+ 2

(
∂wT

∂z

)2
]

,

DISSB =

− 1

Re0

∫
dx

∫
dz

[
2µ0

(
∂uB

∂x

)2

+ 2µ0

(
∂wB

∂z

)2

+ mn

(
dUB

dz

)n−1 (
∂uB

∂z
+

∂wB

∂x

)2
]

.

Lastly, the term ‘INT’ is related to interfacial conditions:

INT =

∫
dx [uBTB,zx + wTB,zz]z=0 −

∫
dx [uT TT,zx + wTT,zz]z=0 ,

which is decomposed into normal and tangential contributions,

INT = NOR + TAN,

where

NOR =

∫
dx [wBTB,zz − wT TT,zz]z=0 ,

and

TAN =

∫
dx [uBTB,zx − uT TT,zx]z=0 .

Note that the normal contribution can be further decomposed to highlight the effects of
gravity and surface tension,

NOR = TEN + HYD =
Γ

Re0

∫ `

0

dx ηxxw (x, z = 0) +
G

Re0

∫ `

0

dx ηw (x, z = 0) .

APPENDIX C

In this section we study the location of the yield surface, and demonstrate that in the
presence of a small-amplitude disturbance, the location of the yield surface in the bottom
layer shifts from z = −h0, to a value

z = −h0 − δh0, h0 + δh0 = mπ0 + Bn− Re2
∗

Re2
0

− ε
m

2Re0

[
eiαx

(
D2 + α2

)
φB

]
z=0

, (C-1)
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To verify Eq. (C-1), we derive the equation for the isosurface of viscosity when a small
sinusoidal wave is introduced into the problem. In the base state, the curve z = −z0

is an isosurface of viscosity, corresponding to the viscosity value µ0 = µ (−z0). When a
disturbance is introduced, the isosurface is shifted to z = −z0 + εf (x), where ε is the
magnitude of the disturbance. The isosurface is now determined by the relation

µ(0) (−z0 + εf (x)) + µ(1) (x,−z0 + εf (x)) = µ0 = Const.,

where the superscripts denote the order of successive terms in the small-ε expansion. By
expanding this expression further, we obtain the condition

µ(0) (−z0) + ε
dµ(0)

dz

∣∣∣∣
z=−z0

f (x) + µ(1) (x,−z0) = µ0.

Since µ(0) (−z0) = µ0, it follows that

f (x) = −µ(1) (x,−z0)

dµ(0)

dz

∣∣∣∣
z=−z0

. (C-2)

The coefficients in Eq. (C-2) can be computed readily:

µ(0) = m +
Bn

dUB/dz
,

dµ(0)

dz
= − Bn

(dUB/dz)2

d2UB

dz2
,

d2UB

dz2
= − m

2Re0

,

µ(1) = − Bn

(dUB/dz)2 Π(1),

hence
f (x) =

m

2Re0

Π(1),

Thus, the isosurface is now located at

z = −z0 + εf (x) = −z0 + ε
m

2Re0

Π(1). (C-3)

If the value of the viscosity on the isosurface is in fact the limiting viscosity, then Eq. (C-3)
gives the location of the yield surface. Using Π(1) = < [eiαx (D2 + α2) φB] and z0 = h0, the
shifted location of the yield surface is

z = −h0 + ε
m

2Re0

< [
eiαx

(
D2 + α2

)
φB

]
z=0

,

where we have projected the final term on to the plane z = 0 since h0 = O (ε). Thus, we
recover Eq. (C-1).
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